Suppr超能文献

蜜蜂和瓦螨微生物群中的功能冗余与生态位特化

Functional redundancy and niche specialization in honeybee and Varroa microbiomes.

作者信息

Skičková Štefánia, Kratou Myriam, Svobodová Karolína, Maitre Apolline, Abuin-Denis Lianet, Wu-Chuang Alejandra, Obregón Dasiel, Said Mourad Ben, Majláthová Viktória, Krejčí Alena, Cabezas-Cruz Alejandro

机构信息

Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Animal Physiology, Košice, 04181, Slovakia.

Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia.

出版信息

Int Microbiol. 2025 Apr;28(4):795-810. doi: 10.1007/s10123-024-00582-y. Epub 2024 Aug 22.

Abstract

The honeybee (Apis mellifera) is a key pollinator critical to global agriculture, facing threats from various stressors, including the ectoparasitic Varroa mite (Varroa destructor). Previous studies have identified shared bacteria between Varroa mites and honeybees, yet it remains unclear if these bacteria assemble similarly in both species. This study builds on existing knowledge by investigating co-occurrence patterns in the microbiomes of both Varroa mites and honeybees, shedding light on potential interactions. Leveraging 16S rRNA datasets, we conducted co-occurrence network analyses, explored Core Association Networks (CAN) and assess network robustness. Comparative network analyses revealed structural differences between honeybee and mite microbiomes, along with shared core features and microbial motifs. The mite network exhibited lower robustness, suggesting less resistance to taxa extension compared to honeybees. Furthermore, analyses of predicted functional profiling and taxa contribution revealed that common central pathways in the metabolic networks have different taxa contributing to Varroa mites and honeybee microbiomes. The results show that while both microbial systems exhibit functional redundancy, in which different taxa contribute to the functional stability and resilience of the ecosystem, there is evidence for niche specialization resulting in unique contributions to specific pathways in each part of this host-parasite system. The specificity of taxa contribution to key pathways offers targeted approaches to Varroa microbiome management and preserving honeybee microbiome. Our findings provide valuable insights into microbial interactions, aiding farmers and beekeepers in maintaining healthy and resilient bee colonies amid increasing Varroa mite infestations.

摘要

蜜蜂(西方蜜蜂)是全球农业至关重要的关键传粉者,面临着包括外寄生瓦螨(狄斯瓦螨)在内的各种压力源的威胁。先前的研究已经确定了瓦螨和蜜蜂之间存在共同的细菌,但这些细菌在两个物种中的组装方式是否相似仍不清楚。本研究基于现有知识,通过调查瓦螨和蜜蜂微生物组中的共生模式,揭示潜在的相互作用。利用16S rRNA数据集,我们进行了共生网络分析,探索了核心关联网络(CAN)并评估了网络稳健性。比较网络分析揭示了蜜蜂和螨类微生物组之间的结构差异,以及共同的核心特征和微生物基序。螨类网络表现出较低的稳健性,表明与蜜蜂相比,其对分类群扩展的抵抗力较弱。此外,对预测功能谱和分类群贡献的分析表明,代谢网络中的常见核心途径在瓦螨和蜜蜂微生物组中有不同的分类群起作用。结果表明,虽然两个微生物系统都表现出功能冗余,即不同的分类群对生态系统的功能稳定性和恢复力有贡献,但有证据表明生态位特化导致在这个宿主-寄生虫系统的每个部分对特定途径有独特贡献。分类群对关键途径贡献的特异性为瓦螨微生物组管理和保护蜜蜂微生物组提供了有针对性的方法。我们的研究结果为微生物相互作用提供了有价值的见解,有助于农民和养蜂人在瓦螨侵扰不断增加的情况下维持健康且有恢复力的蜂群。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验