Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan.
Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
PLoS One. 2024 Aug 22;19(8):e0291887. doi: 10.1371/journal.pone.0291887. eCollection 2024.
Seizures are increasingly being recognized as the hallmark of Alzheimer's disease (AD). Neuronal hyperactivity can be a consequence of neuronal damage caused by abnormal amyloid β (Aß) depositions. However, it can also be a cell-autonomous phenomenon causing AD by Aß-independent mechanisms. Various studies using animal models have shown that Ca2+ is released from the endoplasmic reticulum (ER) via type 1 inositol triphosphate receptors (InsP3R1s) and ryanodine receptors (RyRs). To investigate which is the main pathophysiological mechanism in human neurons, we measured Ca2+ signaling in neural cells derived from three early-onset AD patients harboring Presenilin-1 variants (PSEN1 p.A246E, p.L286V, and p.M146L). Of these, it has been reported that PSEN1 p.A246E and p.L286V did not produce a significant amount of abnormal Aß. We found all PSEN1-mutant neurons, but not wild-type, caused abnormal Ca2+-bursts in a manner dependent on the calcium channel, Ryanodine Receptor 2 (RyR2). Indeed, carvedilol, an RyR2 inhibitor, and VK-II-86, an analog of carvedilol without the β-blocking effects, sufficiently eliminated the abnormal Ca2+ bursts. In contrast, Dantrolene, an inhibitor of RyR1 and RyR3, and Xestospongin c, an IP3R inhibitor, did not attenuate the Ca2+-bursts. The Western blotting showed that RyR2 expression was not affected by PSEN1 p.A246E, suggesting that the variant may activate the RyR2. The RNA-Seq data revealed that ER-stress responsive genes were increased, and mitochondrial Ca2+-transporter genes were decreased in PSEN1A246E cells compared to the WT neurons. Thus, we propose that aberrant Ca2+ signaling is a key link between human pathogenic PSEN1 variants and cell-intrinsic hyperactivity prior to deposition of abnormal Aß, offering prospects for the development of targeted prevention strategies for at-risk individuals.
癫痫发作越来越被认为是阿尔茨海默病(AD)的标志。神经元活性亢进可能是由异常淀粉样β(Aβ)沉积引起的神经元损伤的后果。然而,它也可能是一种通过 Aβ 独立机制引起 AD 的细胞自主性现象。使用动物模型的各种研究表明,Ca2+通过 1 型肌醇三磷酸受体(InsP3R1s)和兰尼碱受体(RyRs)从内质网(ER)中释放出来。为了研究哪种是人类神经元的主要病理生理机制,我们测量了来自携带早发性 AD 患者 Presenilin-1 变体(PSEN1 p.A246E、p.L286V 和 p.M146L)的神经细胞中的 Ca2+信号。其中,据报道 PSEN1 p.A246E 和 p.L286V 没有产生大量异常的 Aβ。我们发现所有 PSEN1 突变神经元,但不是野生型神经元,以依赖于钙通道兰尼碱受体 2(RyR2)的方式引起异常的 Ca2+-爆发。事实上,RyR2 抑制剂 carvedilol 和没有β-阻断作用的 carvedilol 类似物 VK-II-86 足以消除异常的 Ca2+爆发。相比之下,RyR1 和 RyR3 的抑制剂 Dantrolene 以及 IP3R 抑制剂 Xestospongin c 并没有减弱 Ca2+-爆发。Western blotting 显示 RyR2 表达不受 PSEN1 p.A246E 的影响,表明该变体可能激活了 RyR2。RNA-Seq 数据显示,与 WT 神经元相比,PSEN1A246E 细胞中 ER 应激反应基因增加,而线粒体 Ca2+转运基因减少。因此,我们提出异常的 Ca2+信号是人类致病性 PSEN1 变体与异常 Aβ沉积前细胞内活性亢进之间的关键联系,为高危个体的靶向预防策略的发展提供了前景。