Mashhadimoslem Hossein, Abdol Mohammad Ali, Karimi Peyman, Zanganeh Kourosh, Shafeen Ahmed, Elkamel Ali, Kamkar Milad
Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Natural Resources Canada (NRCan), Canmet ENERGY-Ottawa (CE-O), 1 Haanel Dr., Ottawa, ON K1A 1M1 Canada.
ACS Nano. 2024 Sep 3;18(35):23842-23875. doi: 10.1021/acsnano.3c13001. Epub 2024 Aug 22.
Machine learning (ML) using data sets of atomic and molecular force fields (FFs) has made significant progress and provided benefits in the fields of chemistry and material science. This work examines the interactions between chemistry and materials computational science at the atomic and molecular scales for metal-organic framework (MOF) adsorbent development toward carbon dioxide (CO) capture. Herein, a connection will be drawn between atomic forces predicted by ML algorithms and the structures of MOFs for CO adsorption. Our study also takes into account the successes of atomic computational screening in the field of materials science, especially quantum ML, and its relationship to ML algorithms that clarify advancements in the area of CO adsorption by MOFs. Additionally, we reviewed the processes for supplying data to ML algorithms for algorithm training, including text mining from scientific articles, and MOF's formula processing linked to the chemical properties of MOFs. To create ML algorithms for future research, we recommend that the digitization of scientific records can help efficiently synthesize advanced MOFs. Finally, a future vision for developing pioneer MOF synthesis routes for CO capture is presented in this review article.
利用原子和分子力场(FF)数据集的机器学习(ML)在化学和材料科学领域取得了重大进展并带来了诸多益处。这项工作在原子和分子尺度上研究了化学与材料计算科学之间的相互作用,以开发用于捕获二氧化碳(CO₂)的金属有机框架(MOF)吸附剂。在此,将建立由ML算法预测的原子力与用于CO₂吸附的MOF结构之间的联系。我们的研究还考虑了材料科学领域中原子计算筛选的成功案例,特别是量子ML,以及它与阐明MOF在CO₂吸附领域进展的ML算法之间的关系。此外,我们回顾了为算法训练向ML算法提供数据的过程,包括从科学文章中进行文本挖掘,以及与MOF化学性质相关的MOF配方处理。为了创建用于未来研究的ML算法,我们建议科学记录的数字化有助于高效合成先进的MOF。最后,这篇综述文章提出了开发用于CO₂捕获的开创性MOF合成路线的未来愿景。