Suppr超能文献

基于欧几里得距离保特征降维的高效行人再识别

Euclidean-Distance-Preserved Feature Reduction for efficient person re-identification.

机构信息

School of Electronic and Computer Engineering, Peking University, China.

Beijing Jiaotong University, China.

出版信息

Neural Netw. 2024 Dec;180:106572. doi: 10.1016/j.neunet.2024.106572. Epub 2024 Aug 8.

Abstract

Person Re-identification (Re-ID) aims to match person images across non-overlapping cameras. The existing approaches formulate this task as fine-grained representation learning with deep neural networks, which involves extracting image features using a deep convolutional network, followed by mapping the features into a discriminative space through another smaller network, in order to make full use of all possible cues. However, recent Re-ID methods that strive to capture every cue and make the space more discriminative have resulted in longer features, ranging from 1024 to 14336, leading to higher time (distance computation) and space (feature storage) complexities. There are two potential solutions: reduction-after-training methods (such as Principal Component Analysis and Linear Discriminant Analysis) and reduction-during-training methods (such as 1 × 1 Convolution). The former utilizes a statistical approach aiming for a global optimum but lacking end-to-end optimization of large data and deep neural networks. The latter lacks theoretical guarantees and may be vulnerable to training noise such as dataset noise or initialization seed. To address these limitations, we propose a method called Euclidean-Distance-Preserving Feature Reduction (EDPFR) that combines the strengths of both reduction-after-training and reduction-during-training methods. EDPFR first formulates the feature reduction process as a matrix decomposition and derives a condition to preserve the Euclidean distance between features, thus ensuring accuracy in theory. Furthermore, the method integrates the matrix decomposition process into a deep neural network to enable end-to-end optimization and batch training, while maintaining the theoretical guarantee. The result of the EDPFR is a reduction of the feature dimensions from f and f to f and f, while preserving their Euclidean distance, i.e.L(f,f)=L(f,f). In addition to its Euclidean-Distance-Preserving capability, EDPFR also features a novel feature-level distillation loss. One of the main challenges in knowledge distillation is dimension mismatch. While previous distillation losses, usually project the mismatched features to matched class-level, spatial-level, or similarity-level spaces, this can result in a loss of information and decrease the flexibility and efficiency of distillation. Our proposed feature-level distillation leverages the benefits of the Euclidean-Distance-Preserving property and performs distillation directly in the feature space, resulting in a more flexible and efficient approach. Extensive on three Re-ID datasets, Market-1501, DukeMTMC-reID and MSMT demonstrate the effectiveness of our proposed Euclidean-Distance-Preserving Feature Reduction.

摘要

行人再识别(Re-ID)旨在跨非重叠相机匹配行人图像。现有的方法将此任务表述为使用深度神经网络进行细粒度表示学习,其中包括使用深度卷积网络提取图像特征,然后通过另一个较小的网络将特征映射到判别空间,以充分利用所有可能的线索。然而,最近的 Re-ID 方法努力捕捉每个线索并使空间更具判别力,导致特征更长,范围从 1024 到 14336,从而导致更高的时间(距离计算)和空间(特征存储)复杂度。有两种潜在的解决方案:训练后减少方法(如主成分分析和线性判别分析)和训练中减少方法(如 1×1 卷积)。前者利用统计方法,旨在实现全局最优,但缺乏对大数据和深度神经网络的端到端优化。后者缺乏理论保证,并且可能容易受到训练噪声的影响,例如数据集噪声或初始化种子。为了解决这些限制,我们提出了一种名为“欧几里得距离保持特征减少(EDPFR)”的方法,该方法结合了训练后减少和训练中减少方法的优势。EDPFR 首先将特征减少过程表述为矩阵分解,并推导出保持特征之间欧几里得距离的条件,从而在理论上保证准确性。此外,该方法将矩阵分解过程集成到深度神经网络中,实现端到端优化和批量训练,同时保持理论保证。EDPFR 的结果是将特征维度从 f 和 f 减少到 f 和 f,同时保持它们的欧几里得距离,即 L(f,f)=L(f,f)。除了具有欧几里得距离保持能力外,EDPFR 还具有新颖的特征级蒸馏损失。知识蒸馏的主要挑战之一是维度不匹配。虽然以前的蒸馏损失通常将不匹配的特征投影到匹配的类别级、空间级或相似性级别的空间中,但这可能会导致信息丢失,并降低蒸馏的灵活性和效率。我们提出的特征级蒸馏利用了欧几里得距离保持特性的优势,并直接在特征空间中进行蒸馏,从而提供了一种更灵活、更高效的方法。在三个 Re-ID 数据集 Market-1501、DukeMTMC-reID 和 MSMT 上的广泛实验表明,我们提出的欧几里得距离保持特征减少方法是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验