Suppr超能文献

热泳和电渗流在三混合纳米流体仿生人工嗅毛中的应用:违反熵增的方法。

Thermal energy and electro-osmotic for biomimetic artificial olfactory cilia in tri-hybrid nanofluids: entropy-defying approaches.

机构信息

Department of Mathematics and Sciences, Prince Sultan University, 11586 Riyadh, Saudi Arabia.

Department of Computer Sciences Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Saudi Arabia.

出版信息

Nanotechnology. 2024 Sep 3;35(47). doi: 10.1088/1361-6528/ad7269.

Abstract

Biomimetic artificial olfactory cilia have demonstrated potential in identifying specific volatile organic compounds linked to various diseases, including certain cancers, metabolic disorders, and respiratory conditions. These sensors may facilitate non-invasive disease diagnosis and monitoring. Cilia Motility is the coordinated movement of cilia, which are hair-like projections present on the surface of particular cells in different species. Cilia serve an important part in several biological functions, including motility, fluid movement, and sensory reception. Cilia motility is a complicated process that requires the coordinated interaction of structural components and molecular pathways. Cilia are made up of a highly structured structure known as the axoneme, which is made up of microtubules grouped in a unique pattern. The axoneme is made up of nine outer doublet microtubules and a core pair of singlet microtubules. This arrangement offers structural support and serves as a scaffold for the proteins involved in ciliary movement. Our latest endeavors investigate these Multiphysics phenomena in ciliary beating flows that are inspired by biology, utilizing copper, gold, and titania nanoparticles. We examine their functions in biological systems such as peristaltic transport computationally. Our models give precise two- and three-dimensional velocity, temperature, and concentration solutions by integrating transverse magnetohydrodynamics with laser heating. Furthermore, at the channel wall expressions, the skin friction coefficient, Sherwood number, Nusselt number and optimization of entropy generation are acquired and analyzed. Important properties of the velocity and scalar profiles are revealed by a thorough analysis of dimensionless parameters. The simplified examination provides more insight into the trapping patterns that result from the complex interaction between nanofluid rheology and optics. These findings greatly contribute to our knowledge and improvement of nanofluidic transport technologies in a variety of fields supporting industry, sustainability, and medicine. Our combined computational and experimental methodology clarifies the complex dynamics in these systems and provides design guidance for the engineering of improved fluidic devices that make use of multifunctional nanomaterial interfaces and peristaltic motion.

摘要

仿生人工嗅觉纤毛在识别与各种疾病(包括某些癌症、代谢紊乱和呼吸道疾病)相关的特定挥发性有机化合物方面显示出了潜力。这些传感器可能有助于进行非侵入性疾病诊断和监测。纤毛运动是纤毛的协调运动,纤毛是不同物种表面特定细胞上的毛发状突起。纤毛在几个生物学功能中起着重要作用,包括运动、流体运动和感觉接收。纤毛运动是一个复杂的过程,需要结构成分和分子途径的协调相互作用。纤毛由一种高度结构化的结构组成,称为轴丝,它由以独特模式分组的微管组成。轴丝由九根外部二联体微管和一对核心单体微管组成。这种排列提供了结构支撑,并作为涉及纤毛运动的蛋白质的支架。我们最新的努力研究了受生物学启发的纤毛拍打流中的这些多物理现象,利用铜、金和二氧化钛纳米粒子。我们在计算上研究了它们在蠕动运输等生物系统中的功能。我们的模型通过将横向磁流体动力学与激光加热相结合,为二维和三维速度、温度和浓度提供了精确的解决方案。此外,在通道壁表达式中,获得并分析了摩擦系数、舍伍德数、努塞尔数和熵产生的优化。通过对无量纲参数的深入分析,揭示了速度和标量分布的重要特性。简化的检查提供了对由于纳米流体流变学和光学之间的复杂相互作用导致的捕获模式的更深入的了解。这些发现极大地促进了我们对各种领域(包括工业、可持续性和医学)中纳米流体传输技术的知识和改进。我们的计算和实验相结合的方法阐明了这些系统中的复杂动力学,并为利用多功能纳米材料界面和蠕动运动的改进流体设备的工程设计提供了指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验