Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
Minnesota Epilepsy Group, John Nasseff Neuroscience Center at United Hospital, Saint Paul, USA.
Neuroimage. 2023 Nov 1;281:120366. doi: 10.1016/j.neuroimage.2023.120366. Epub 2023 Sep 15.
Electromagnetic source imaging (ESI) offers unique capability of imaging brain dynamics for studying brain functions and aiding the clinical management of brain disorders. Challenges exist in ESI due to the ill-posedness of the inverse problem and thus the need of modeling the underlying brain dynamics for regularizations. Advances in generative models provide opportunities for more accurate and realistic source modeling that could offer an alternative approach to ESI for modeling the underlying brain dynamics beyond equivalent physical source models. However, it is not straightforward to explicitly formulate the knowledge arising from these generative models within the conventional ESI framework. Here we investigate a novel source imaging framework based on mesoscale neuronal modeling and deep learning (DL) that can learn the sensor-source mapping relationship directly from MEG data for ESI. Two DL-based ESI models were trained based on data generated by neural mass models and either generic or personalized head models. The robustness of the two DL models was evaluated by systematic computer simulations and clinical validation in a cohort of 29 drug-resistant focal epilepsy patients who underwent intracranial EEG (iEEG) evaluation or surgical resection. Results estimated from pre-operative MEG interictal spikes were quantified using the overlap with resection regions and the distance to the seizure-onset zone (SOZ) defined by iEEG recordings. The DL-based ESI provided robust results when no personalized head geometry is considered, reaching a spatial dispersion of 21.90 ± 19.03 mm, sublobar concordance of 83 %, and sublobar sensitivity and specificity of 66 and 97 % respectively. When using personalized head geometry derived from individual patients' MRI in the training data, personalized DL-based ESI model can further improve the performance and reached a spatial dispersion of 8.19 ± 8.14 mm, sublobar concordance of 93 %, and sublobar sensitivity and specificity of 77 and 99 % respectively. When compared to the SOZ, the localization error of the personalized approach is 15.78 ± 5.54 mm, outperforming the conventional benchmarks. This work demonstrates that combining generative models and deep learning enables an accurate and robust imaging of epileptogenic zone from MEG recordings with strong sublobar precision, suggesting its added value to enhancing MEG source localization and imaging, and to epilepsy source localization and other clinical applications.
电磁源成像(ESI)提供了一种独特的成像大脑动力学的能力,可用于研究大脑功能并辅助大脑疾病的临床管理。由于逆问题的不适定性,因此需要对潜在的大脑动力学进行建模以进行正则化,因此 ESI 存在挑战。生成模型的进步为更准确和更现实的源建模提供了机会,这为 ESI 提供了一种替代方法,用于对潜在的大脑动力学进行建模,超越等效物理源模型。然而,将这些生成模型产生的知识明确地纳入传统的 ESI 框架中并不简单。在这里,我们研究了一种基于介观神经元建模和深度学习(DL)的新型源成像框架,该框架可以直接从 MEG 数据中学习传感器-源映射关系,用于 ESI。基于神经质量模型生成的数据,训练了两个基于 DL 的 ESI 模型,分别基于通用或个性化头部模型。通过对 29 例接受颅内 EEG(iEEG)评估或手术切除的耐药性局灶性癫痫患者的队列进行系统计算机模拟和临床验证,评估了两个 DL 模型的稳健性。使用 iEEG 记录定义的切除区域和与癫痫发作起始区(SOZ)的距离来量化术前 MEG 发作间棘波的结果。当不考虑个性化头部几何形状时,基于 DL 的 ESI 提供了稳健的结果,空间分散度为 21.90±19.03mm,亚叶一致性为 83%,亚叶敏感性和特异性分别为 66%和 97%。当在训练数据中使用来自个体患者 MRI 的个性化头部几何形状时,个性化基于 DL 的 ESI 模型可以进一步提高性能,空间分散度达到 8.19±8.14mm,亚叶一致性为 93%,亚叶敏感性和特异性分别为 77%和 99%。与 SOZ 相比,个性化方法的定位误差为 15.78±5.54mm,优于传统基准。这项工作表明,结合生成模型和深度学习可以从 MEG 记录中进行准确且稳健的癫痫发作区成像,具有很强的亚叶精度,这表明它对增强 MEG 源定位和成像以及癫痫源定位和其他临床应用具有附加价值。