文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自闭症的静息态 EEG 功率谱和功能连接:一项横断面分析。

Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis.

机构信息

Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland.

Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

出版信息

Mol Autism. 2022 May 18;13(1):22. doi: 10.1186/s13229-022-00500-x.


DOI:10.1186/s13229-022-00500-x
PMID:35585637
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9118870/
Abstract

BACKGROUND: Understanding the development of the neuronal circuitry underlying autism spectrum disorder (ASD) is critical to shed light into its etiology and for the development of treatment options. Resting state EEG provides a window into spontaneous local and long-range neuronal synchronization and has been investigated in many ASD studies, but results are inconsistent. Unbiased investigation in large and comprehensive samples focusing on replicability is needed. METHODS: We quantified resting state EEG alpha peak metrics, power spectrum (PS, 2-32 Hz) and functional connectivity (FC) in 411 children, adolescents and adults (n = 212 ASD, n = 199 neurotypicals [NT], all with IQ > 75). We performed analyses in source-space using individual head models derived from the participants' MRIs. We tested for differences in mean and variance between the ASD and NT groups for both PS and FC using linear mixed effects models accounting for age, sex, IQ and site effects. Then, we used machine learning to assess whether a multivariate combination of EEG features could better separate ASD and NT participants. All analyses were embedded within a train-validation approach (70%-30% split). RESULTS: In the training dataset, we found an interaction between age and group for the reactivity to eye opening (p = .042 uncorrected), and a significant but weak multivariate ASD vs. NT classification performance for PS and FC (sensitivity 0.52-0.62, specificity 0.59-0.73). None of these findings replicated significantly in the validation dataset, although the effect size in the validation dataset overlapped with the prediction interval from the training dataset. LIMITATIONS: The statistical power to detect weak effects-of the magnitude of those found in the training dataset-in the validation dataset is small, and we cannot fully conclude on the reproducibility of the training dataset's effects. CONCLUSIONS: This suggests that PS and FC values in ASD and NT have a strong overlap, and that differences between both groups (in both mean and variance) have, at best, a small effect size. Larger studies would be needed to investigate and replicate such potential effects.

摘要

背景:了解自闭症谱系障碍(ASD)相关的神经元回路的发展对于揭示其病因和开发治疗方法至关重要。静息态 EEG 提供了一个观察自发性局部和长程神经元同步的窗口,已经在许多 ASD 研究中进行了探讨,但结果不一致。需要在大型和综合样本中进行无偏倚的研究,重点是可重复性。

方法:我们在 411 名儿童、青少年和成年人(n=212 名 ASD,n=199 名神经典型[NT],所有 IQ>75)中量化了静息态 EEG 的阿尔法波峰指标、功率谱(PS,2-32 Hz)和功能连接(FC)。我们在源空间中使用来自参与者 MRI 的个体头部模型进行分析。我们使用线性混合效应模型,考虑年龄、性别、智商和地点效应,对 ASD 和 NT 组的 PS 和 FC 的均值和方差进行了差异检验。然后,我们使用机器学习来评估 EEG 特征的多元组合是否可以更好地区分 ASD 和 NT 参与者。所有分析都嵌入在训练-验证方法(70%-30% 分割)中。

结果:在训练数据集中,我们发现年龄和组之间存在对睁眼反应的交互作用(未校正 p=0.042),并且 PS 和 FC 存在显著但较弱的 ASD 与 NT 分类性能(敏感性 0.52-0.62,特异性 0.59-0.73)。这些发现都没有在验证数据集中显著重现,尽管验证数据集中的效应量与训练数据集的预测区间重叠。

局限性:在验证数据集中检测到训练数据集中发现的弱效应(与训练数据集的效应大小相当)的统计能力很小,我们不能完全得出训练数据集效应的可重复性结论。

结论:这表明 ASD 和 NT 中的 PS 和 FC 值有很强的重叠,并且两组之间的差异(无论是均值还是方差)都具有最小的效应量。需要更大的研究来调查和复制这种潜在的效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b745/9118870/a79c5c43625a/13229_2022_500_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b745/9118870/8575f00b2f7f/13229_2022_500_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b745/9118870/e72bcaa781d6/13229_2022_500_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b745/9118870/98eca4d6fe2e/13229_2022_500_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b745/9118870/a79c5c43625a/13229_2022_500_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b745/9118870/8575f00b2f7f/13229_2022_500_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b745/9118870/e72bcaa781d6/13229_2022_500_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b745/9118870/98eca4d6fe2e/13229_2022_500_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b745/9118870/a79c5c43625a/13229_2022_500_Fig4_HTML.jpg

相似文献

[1]
Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis.

Mol Autism. 2022-5-18

[2]
Autism spectrum disorder diagnosis with EEG signals using time series maps of brain functional connectivity and a combined CNN-LSTM model.

Comput Methods Programs Biomed. 2024-6

[3]
Modulation of striatal functional connectivity differences in adults with and without autism spectrum disorder in a single-dose randomized trial of cannabidivarin.

Mol Autism. 2021-7-1

[4]
Aberrant functional connectivity of neural circuits associated with social and sensorimotor deficits in young children with autism spectrum disorder.

Autism Res. 2018-11-26

[5]
Contracted functional connectivity profiles in autism.

Mol Autism. 2024-9-11

[6]
Identification of Autism Subtypes Based on Wavelet Coherence of BOLD FMRI Signals Using Convolutional Neural Network.

Sensors (Basel). 2021-8-4

[7]
Intrinsic functional connectivity variance and state-specific under-connectivity in autism.

Hum Brain Mapp. 2017-8-9

[8]
Abnormal functional connectivity of the reward network is associated with social communication impairments in autism spectrum disorder: A large-scale multi-site resting-state fMRI study.

J Affect Disord. 2024-2-15

[9]
Resolving heterogeneity in dynamics of synchronization stability within the salience network in autism spectrum disorder.

Prog Neuropsychopharmacol Biol Psychiatry. 2024-4-20

[10]
EEG resting-state functional connectivity: evidence for an imbalance of external/internal information integration in autism.

J Neurodev Disord. 2022-8-27

引用本文的文献

[1]
Resting-State Electroencephalogram (EEG) as a Biomarker of Learning Disabilities in Children-A Systematic Review.

J Clin Med. 2025-8-21

[2]
Leveraging AI-Driven Neuroimaging Biomarkers for Early Detection and Social Function Prediction in Autism Spectrum Disorders: A Systematic Review.

Healthcare (Basel). 2025-7-22

[3]
Theta and alpha connectivity in children with autism spectrum disorder.

Brain Commun. 2025-2-19

[4]
White matter microstructure as a potential contributor to differences in resting state alpha activity between neurotypical and autistic children: a longitudinal multimodal imaging study.

Mol Autism. 2025-3-11

[5]
Exploring EEG resting state differences in autism: sparse findings from a large cohort.

Mol Autism. 2025-2-24

[6]
Atypical Resting-State EEG Graph Metrics of Network Efficiency Across Development in Autism and Their Association with Social Cognition: Results from the LEAP Study.

J Autism Dev Disord. 2025-2-14

[7]
EEG during dynamic facial emotion processing reveals neural activity patterns associated with autistic traits in children.

Cereb Cortex. 2025-2-5

[8]
EEG During Dynamic Facial Emotion Processing Reveals Neural Activity Patterns Associated with Autistic Traits in Children.

bioRxiv. 2024-8-28

[9]
Relationships between peak alpha frequency, age, and autistic traits in young children with and without autism spectrum disorder.

Front Psychiatry. 2024-8-30

[10]
Neurological Validation of ASD Diagnostic Criteria Using Frontal Alpha and Theta Asymmetry.

J Clin Med. 2024-8-18

本文引用的文献

[1]
Increased aperiodic gamma power in young boys with Fragile X Syndrome is associated with better language ability.

Mol Autism. 2021-2-25

[2]
Increased EEG coherence in long-distance and short-distance connectivity in children with autism spectrum disorders.

Brain Behav. 2020-10

[3]
Functional connectivity of EEG is subject-specific, associated with phenotype, and different from fMRI.

Neuroimage. 2020-9

[4]
Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016.

MMWR Surveill Summ. 2020-3-27

[5]
Combined frequency-tagging EEG and eye tracking reveal reduced social bias in boys with autism spectrum disorder.

Cortex. 2020-4

[6]
Adults with high functioning autism display idiosyncratic behavioral patterns, neural representations and connectivity of the 'Voice Area' while judging the appropriateness of emotional vocal reactions.

Cortex. 2020-4

[7]
Autism spectrum disorder.

Nat Rev Dis Primers. 2020-1-16

[8]
Developmental Effects on Auditory Neural Oscillatory Synchronization Abnormalities in Autism Spectrum Disorder.

Front Integr Neurosci. 2019-7-25

[9]
From pattern classification to stratification: towards conceptualizing the heterogeneity of Autism Spectrum Disorder.

Neurosci Biobehav Rev. 2019-7-19

[10]
Variation in Reported Human Head Tissue Electrical Conductivity Values.

Brain Topogr. 2019-5-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索