Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea.
Int J Biol Macromol. 2024 Oct;278(Pt 3):134907. doi: 10.1016/j.ijbiomac.2024.134907. Epub 2024 Aug 20.
This study investigates the effects of blending poly(3-hydroxybutyrate) (PHB) with microcrystalline cellulose (MCC), polylactic acid (PLA), lignin, and polyethylene glycol (PEG) on the properties of the resulting composite materials. Using a melt blending method, the composites were characterized by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The results reveal that blending PHB with MCC, PLA, lignin, and PEG significantly enhances the thermal stability, mechanical strength, and biodegradability of the composites compared to pure PHB. Specifically, the tensile strength of PHB-PLA blends increased by up to 47.77 MPa, compared to 27.16 MPa for pure PHB. The blend with 50 % cellulose content showed the highest tensile strength of 54.91 MPa. TGA results show that the PHB-MCC and PHB-lignin blends exhibit improved thermal stability, with onset degradation temperatures rising to 294.8 °C, compared to 275 °C for pure PHB. Moreover, the PHB-lignin blend demonstrated a gradual weight loss starting at 200 °C and continuing until about 350 °C. SEM images of the blends indicate a uniform microstructure, contributing to the improved mechanical properties. The PHB-PEG blend demonstrated an elongation at break of 4.34 %, significantly higher than the 2.15 % for pure PHB, highlighting its suitability for applications requiring pliable materials. The biodegradability tests showed that PHB-PLA blends maintained consistent degradation rates, making them advantageous for applications needing controlled biodegradability. These findings suggest that blending PHB with MCC, PLA, lignin, and PEG can produce materials with enhanced properties suitable for applications in packaging, biomedical devices, and other areas where both performance and sustainability are essential.
本研究探讨了将聚 3-羟基丁酸酯(PHB)与微晶纤维素(MCC)、聚乳酸(PLA)、木质素和聚乙二醇(PEG)共混对所得复合材料性能的影响。采用熔融共混法,通过扫描电子显微镜(SEM)、核磁共振(NMR)和热重分析(TGA)对复合材料进行了表征。结果表明,与纯 PHB 相比,将 PHB 与 MCC、PLA、木质素和 PEG 共混可显著提高复合材料的热稳定性、力学强度和生物降解性。具体而言,与纯 PHB 的 27.16 MPa 相比,PHB-PLA 共混物的拉伸强度增加了高达 47.77 MPa。纤维素含量为 50%的共混物表现出最高的拉伸强度,为 54.91 MPa。TGA 结果表明,与纯 PHB 的 275°C 相比,PHB-MCC 和 PHB-木质素共混物的起始降解温度提高到 294.8°C,表现出改善的热稳定性。此外,PHB-木质素共混物在 200°C 开始出现逐渐的重量损失,持续到约 350°C。共混物的 SEM 图像表明存在均匀的微观结构,这有助于提高力学性能。PHB-PEG 共混物的断裂伸长率为 4.34%,明显高于纯 PHB 的 2.15%,表明其适用于需要柔韧材料的应用。生物降解性测试表明,PHB-PLA 共混物保持一致的降解速率,使其在需要控制生物降解性的应用中具有优势。这些发现表明,将 PHB 与 MCC、PLA、木质素和 PEG 共混可以生产出具有增强性能的材料,适用于包装、生物医学设备和其他需要性能和可持续性的应用领域。