Institut de Mathématiques et de Sciences Physiques, Dangbo, Benin; Université d'Abomey Calavi, Benin.
Faculté des Sciences de la Santé, Université d'Abomey Calavi, Cotonou, Benin.
J Microbiol Methods. 2024 Oct;225:107022. doi: 10.1016/j.mimet.2024.107022. Epub 2024 Aug 20.
Malaria is a deadly disease of significant concern for the international community. It is an infectious disease caused by a Plasmodium spp. parasite and transmitted by the bite of an infected female Anopheles mosquito. The parasite multiplies in the liver and then destroys the person's red blood cells until it reaches the severe stage, leading to death. The most used tools for diagnosing this disease are the microscope and the rapid diagnostic test (RDT), which have limitations preventing control of the disease. Computer vision technologies present alternatives by providing the means for early detection of this disease before it reaches the severe stage, facilitating treatment and saving patients. In this article, we suggest deep learning methods for earlier and more accurate detection of malaria parasites with high generalization capabilities using microscopic images of blood smears from many heterogeneous patients. These techniques are based on an image preprocessing method that mitigates some of the challenges associated with the variety of red cell characteristics due to patient diversity and other artifacts present in the data. For the study, we collected 65,970 microscopic images from 876 different patients to form a dataset of 33,007 images with a variety that enables us to create models with a high level of generalization. Three types of convolutional neural networks were used, namely Convolutional Neural Network (CNN), DenseNet, and LeNet-5, and the highest classification accuracy on the test data was 97.50% found with the DenseNet model.
疟疾是一种严重的疾病,引起了国际社会的高度关注。它是一种由疟原虫属寄生虫引起的传染病,通过受感染的雌性按蚊叮咬传播。寄生虫在肝脏中繁殖,然后破坏人体的红细胞,直到达到严重阶段,导致死亡。诊断这种疾病最常用的工具是显微镜和快速诊断测试(RDT),但它们存在局限性,无法控制这种疾病。计算机视觉技术提供了替代方法,通过在疾病达到严重阶段之前提供早期检测的手段,促进治疗并拯救患者。在本文中,我们建议使用深度学习方法,利用来自许多异质患者的血涂片显微镜图像,具有高泛化能力,更早、更准确地检测疟原虫。这些技术基于一种图像预处理方法,可以减轻由于患者多样性和数据中存在的其他伪影导致的红细胞特征多样性带来的一些挑战。为了进行研究,我们从 876 位不同的患者中收集了 65970 张显微镜图像,形成了一个包含 33007 张图像的数据集,这些图像的多样性使我们能够创建具有高度泛化能力的模型。我们使用了三种卷积神经网络,即卷积神经网络(CNN)、DenseNet 和 LeNet-5,在测试数据上发现的最高分类准确率为 97.50%,是 DenseNet 模型得出的结果。