Suppr超能文献

深度学习和迁移学习在疟疾检测中的应用。

Deep Learning and Transfer Learning for Malaria Detection.

机构信息

Department of Computer Science & Engineering, JNTUH College of Engineering, Hyderabad, India.

Department of Computer Science and engineering, CMR Institute of Technology Hyderabad, India.

出版信息

Comput Intell Neurosci. 2022 Jun 29;2022:2221728. doi: 10.1155/2022/2221728. eCollection 2022.

Abstract

Infectious disease malaria is a devastating infectious disease that claims the lives of more than 500,000 people worldwide every year. Most of these deaths occur as a result of a delayed or incorrect diagnosis. At the moment, the manual microscope is considered to be the most effective equipment for diagnosing malaria. It is, on the other hand, time-consuming and prone to human error. Because it is such a serious global health issue, it is important that the evaluation process be automated. The objective of this article is to advocate for the automation of the diagnosis process in order to eliminate the need for human intervention in the process. Convolutional neural networks (CNNs) and other deep-learning technologies, such as image processing, are being utilized to evaluate parasitemia in microscopic blood slides in order to enhance diagnostic accuracy. The approach is based on the intensity characteristics of parasites and erythrocytes, which are both known to be variable. Images of infected and noninfected erythrocytes are gathered and fed into the CNN models ResNet50, ResNet34, VGG-16, and VGG-19, which are all trained on the same dataset. The techniques of transfer learning and fine-tuning are employed, and the outcomes are contrasted. The VGG-19 model obtained the best overall performance given the parameters and dataset that were evaluated.

摘要

传染病疟疾是一种具有毁灭性的传染病,每年在全球范围内导致超过 50 万人死亡。这些死亡大多数是由于诊断延误或不正确所致。目前,手动显微镜被认为是诊断疟疾最有效的设备。然而,它既耗时又容易出现人为错误。由于这是一个严重的全球健康问题,因此重要的是使评估过程自动化。本文的目的是倡导诊断过程的自动化,以消除该过程对人工干预的需求。卷积神经网络(CNN)和其他深度学习技术,如图像处理,被用于评估显微镜血片中的疟原虫载量,以提高诊断准确性。该方法基于寄生虫和红细胞的强度特征,这两个特征都是已知可变的。采集感染和未感染的红细胞图像,并将其输入到 ResNet50、ResNet34、VGG-16 和 VGG-19 这四个基于相同数据集训练的 CNN 模型中。使用了迁移学习和微调技术,并对结果进行了对比。考虑到评估的参数和数据集,VGG-19 模型获得了最佳的整体性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8a8/9259269/966f79c4313d/CIN2022-2221728.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验