Suppr超能文献

基于瓦片的显微镜图像深度学习处理在疟疾筛查中的应用。

Tile-based microscopic image processing for malaria screening using a deep learning approach.

机构信息

Faculty of Electrical and Computer Engineering, Jimma University, 378, Jimma, Ethiopia.

出版信息

BMC Med Imaging. 2023 Mar 22;23(1):39. doi: 10.1186/s12880-023-00993-9.

Abstract

BACKGROUND

Manual microscopic examination remains the golden standard for malaria diagnosis. But it is laborious, and pathologists with experience are needed for accurate diagnosis. The need for computer-aided diagnosis methods is driven by the enormous workload and difficulties associated with manual microscopy based examination. While the importance of computer-aided diagnosis is increasing at an enormous pace, fostered by the advancement of deep learning algorithms, there are still challenges in detecting small objects such as malaria parasites in microscopic images of blood films. The state-of-the-art (SOTA) deep learning-based object detection models are inefficient in detecting small objects accurately because they are underrepresented on benchmark datasets. The performance of these models is affected by the loss of detailed spatial information due to in-network feature map downscaling. This is due to the fact that the SOTA models cannot directly process high-resolution images due to their low-resolution network input layer.

METHODS

In this study, an efficient and robust tile-based image processing method is proposed to enhance the performance of malaria parasites detection SOTA models. Three variants of YOLOV4-based object detectors are adopted considering their detection accuracy and speed. These models were trained using tiles generated from 1780 high-resolution P. falciparum-infected thick smear microscopic images. The tiling of high-resolution images improves the performance of the object detection models. The detection accuracy and the generalization capability of these models have been evaluated using three datasets acquired from different regions.

RESULTS

The best-performing model using the proposed tile-based approach outperforms the baseline method significantly (Recall, [95.3%] vs [57%] and Average Precision, [87.1%] vs [76%]). Furthermore, the proposed method has outperformed the existing approaches that used different machine learning techniques evaluated on similar datasets.

CONCLUSIONS

The experimental results show that the proposed method significantly improves P. falciparum detection from thick smear microscopic images while maintaining real-time detection speed. Furthermore, the proposed method has the potential to assist and reduce the workload of laboratory technicians in malaria-endemic remote areas of developing countries where there is a critical skill gap and a shortage of experts.

摘要

背景

手动显微镜检查仍然是疟疾诊断的金标准。但它很繁琐,需要有经验的病理学家才能做出准确的诊断。由于手动显微镜检查工作量大,难度大,因此需要计算机辅助诊断方法。虽然深度学习算法的进步极大地推动了计算机辅助诊断的重要性,但在检测血膜显微镜图像中的小物体(如疟原虫)方面仍然存在挑战。基于深度学习的最先进(SOTA)目标检测模型在检测小物体方面效率低下,因为它们在基准数据集上代表性不足。由于 SOTA 模型的网络特征图下采样导致详细空间信息丢失,这些模型的性能受到影响。这是因为 SOTA 模型由于其低分辨率网络输入层,无法直接处理高分辨率图像。

方法

在这项研究中,提出了一种高效、稳健的基于图块的图像处理方法,以提高疟疾寄生虫检测 SOTA 模型的性能。考虑到检测精度和速度,采用了三种基于 YOLOV4 的目标检测模型变体。这些模型使用从 1780 张高分辨率 P. falciparum 感染厚涂片显微镜图像生成的图块进行训练。高分辨率图像的平铺提高了目标检测模型的性能。使用从不同地区采集的三个数据集评估了这些模型的检测精度和泛化能力。

结果

使用提出的基于图块的方法的最佳模型的性能明显优于基线方法(召回率,[95.3%] 与 [57%] 和平均精度,[87.1%] 与 [76%])。此外,该方法在使用相似数据集评估的不同机器学习技术的现有方法中表现出色。

结论

实验结果表明,该方法显著提高了厚涂片显微镜图像中 P. falciparum 的检测率,同时保持了实时检测速度。此外,该方法具有潜力,可以协助和减轻发展中国家疟疾流行地区实验室技术人员的工作量,这些地区存在严重的技能差距和专家短缺。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验