Suppr超能文献

对接相互作用决定了广泛存在的蛋白磷酸酶家族成员的底物特异性。

Docking interactions determine substrate specificity of members of a widespread family of protein phosphatases.

机构信息

Molecular and Cell Biology Program, Brandeis University, Waltham, Massachusetts, USA; Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA.

Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA.

出版信息

J Biol Chem. 2024 Sep;300(9):107700. doi: 10.1016/j.jbc.2024.107700. Epub 2024 Aug 22.

Abstract

How protein phosphatases achieve specificity for their substrates is a major outstanding question. PPM family serine/threonine phosphatases are widespread in bacteria and eukaryotes, where they dephosphorylate target proteins with a high degree of specificity. In bacteria, PPM phosphatases control diverse transcriptional responses by dephosphorylating anti-anti-sigma factors of the STAS domain family, exemplified by Bacillus subtilis phosphatases SpoIIE, which controls cell-fate during endospore formation, and RsbU, which initiates the general stress response. Using a combination of forward genetics, biochemical reconstitution, and AlphaFold2 structure prediction, we identified a conserved, tripartite substrate docking interface comprised of three variable loops on the surface of the PPM phosphatase domains of SpoIIE and RsbU that recognize the three-dimensional structure of the substrate protein. Nonconserved amino acids in these loops facilitate the accommodation of the cognate substrate and prevent dephosphorylation of the noncognate substrate. Together, single-amino acid substitutions in these three elements cause an over 500-fold change in specificity. Our data additionally suggest that substrate-docking interactions regulate phosphatase specificity through a conserved allosteric switch element that controls the catalytic efficiency of the phosphatase by positioning the metal cofactor and substrate. We hypothesize that this is a generalizable mechanistic model for PPM family phosphatase substrate specificity. Importantly, the substrate docking interface with the phosphatase is only partially overlapping with the much more extensive interface with the upstream kinase, suggesting the possibility that kinase and phosphatase specificity evolved independently.

摘要

蛋白磷酸酶如何实现其底物的特异性是一个悬而未决的主要问题。PPM 家族丝氨酸/苏氨酸磷酸酶广泛存在于细菌和真核生物中,它们能高度特异性地去磷酸化靶蛋白。在细菌中,PPM 磷酸酶通过去磷酸化 STAS 结构域家族的反反σ因子来控制多种转录反应,枯草芽孢杆菌 SpoIIE 磷酸酶就是一个很好的例子,它控制着芽孢形成过程中的细胞命运,而 RsbU 则启动了一般应激反应。我们采用正向遗传学、生化重建和 AlphaFold2 结构预测的组合方法,鉴定出一个保守的、三部分的底物对接界面,由 SpoIIE 和 RsbU 的 PPM 磷酸酶结构域表面的三个可变环组成,该界面识别底物蛋白的三维结构。这些环中的非保守氨基酸有助于容纳同源底物,并防止非同源底物的去磷酸化。这三个元件中的单个氨基酸取代会导致特异性超过 500 倍的变化。我们的数据还表明,底物对接相互作用通过一个保守的变构开关元件来调节磷酸酶的特异性,该元件通过定位金属辅因子和底物来控制磷酸酶的催化效率。我们假设这是 PPM 家族磷酸酶底物特异性的一种可推广的机制模型。重要的是,与上游激酶的更广泛界面相比,与磷酸酶的底物对接界面只是部分重叠,这表明激酶和磷酸酶特异性可能是独立进化的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fb5/11418112/03ea71d272d4/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验