Suppr超能文献

生物质限域梯度多孔双效细菌纤维素薄膜,集增强型辐射冷却与吸湿排汗功能于一体,实现高效热管理。

Biomass confined gradient porous Janus bacterial cellulose film integrating enhanced radiative cooling with perspiration-wicking for efficient thermal management.

机构信息

Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China.

Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214000, PR China; Key Laboratory of Textile Fabrics, College of Textiles and Clothing, Anhui Polytechnic University, Anhui 241000, PR China.

出版信息

Carbohydr Polym. 2024 Nov 1;343:122482. doi: 10.1016/j.carbpol.2024.122482. Epub 2024 Jul 16.

Abstract

Sophisticated structure design and multi-step manufacturing processes for balancing spectra-selective optical property and the necessary applicable performance for human thermal-wet regulation, is the major limitation in wide application of radiative cooling materials. Herein, we proposed a biomass confinement strategy to a gradient porous Janus cellulose film for enhanced optical performance without compromising thermal-wet comfortable. The bacterial cellulose confined grow in the micro-nano pores between PP nonwoven fabric and SiO achieving the cross-scale gradient porous Janus structure. This structure enables the inorganic scatterers even distribution forming multi-reflecting optical mechanism, thereby, gradient porous Janus film demonstrates a reflectivity of 93.1 % and emissivity of 88.1 %, attains a sub-ambient cooling temperature difference of 2.8 °C(daytime) and 8.5 °C(night). Film enables bare skin to avoid overheating by 7.7 °C compared to cotton fabric. It reaches a 17.2 °C building cooling temperature under 1 sun radiance. Moreover, biomass confined micro-nano gradient porous structure integrating with Janus wet gradient guarantees the driven force for directional water transportation, which satisfies the thermal-wet comfortable demands for human cooling application without any further complicated process. Overall, bacterial cellulose based biomass confining strategy provides a prospective method to obtain outdoor-service performance in cooling materials.

摘要

复杂的结构设计和多步制造工艺,用于平衡光谱选择性光学性能和人体热湿调节所需的必要应用性能,是辐射冷却材料广泛应用的主要限制。在此,我们提出了一种生物质限制策略,用于增强光学性能而不会牺牲热湿舒适的梯度多孔 Janus 纤维素膜。细菌纤维素在 PP 无纺纤维和 SiO 之间的微纳孔中限制生长,形成跨尺度梯度多孔 Janus 结构。这种结构使无机散射体均匀分布,形成多反射光学机制,从而使梯度多孔 Janus 膜的反射率达到 93.1%,发射率达到 88.1%,实现了 2.8°C(白天)和 8.5°C(夜间)的环境温度冷却温差。与棉织物相比,薄膜使裸露的皮肤避免过热 7.7°C。在 1 个太阳辐照度下,它可达到 17.2°C 的建筑冷却温度。此外,Janus 湿梯度的生物质限制微纳梯度多孔结构集成保证了定向水输送的驱动力,满足人体冷却应用的热湿舒适需求,无需任何复杂的工艺。总的来说,基于细菌纤维素的生物质限制策略为冷却材料获得户外服务性能提供了一种有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验