Ding Chengfeng, Gao Ping, Wang Xianfeng, Yin Xia, Yu Jianyong, Ding Bin
State Key Laboratory of Advanced Fiber Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
Adv Mater. 2025 Aug 21:e08518. doi: 10.1002/adma.202508518.
Radiative cooling textiles hold great promise for achieving personal thermal comfort amidst the rising global temperatures while enhancing productivity and saving energy. However, despite extensive research, most state-of-the-art radiative cooling textiles possess solely radiative functions, failing to achieve highly efficient cooling across all scenarios, particularly as high temperatures and high humidity diminish non-radiative cooling power. This work presents a multimodal super-cooling textile that integrates radiative, conductive, and evaporative mechanisms through a 3D cladding strategy to enhance the cooling effect in various scenarios without compromising radiative performance. This method enables the surfaces of all 1D single fibers to be closely 3D clad with 2D boron nitride nanosheets, thereby achieving ultra-high solar reflectivity (97.30%), omnidirectional heat dissipation (in-plane and out-of-plane thermal conductivity of 2.40 and 0.33 W m K, respectively), and unidirectional moisture-wicking properties (transport index of 1547%) through high backscattering efficiency, a 3D thermal conductivity network structure, and a Janus wetting structure. Enabled by the multi-cooling mechanisms, MST drops temperature by 20 °C versus cotton in outdoor sunlight. Even in hot, humid circumstances, it still provides a 2 °C cooling advantage over cotton. This work thereby provides a promising strategy for personal thermal and moisture management textiles across various complex environments.
在全球气温不断上升的情况下,辐射冷却纺织品在实现个人热舒适度方面具有巨大潜力,同时还能提高生产力和节约能源。然而,尽管进行了广泛的研究,但大多数最先进的辐射冷却纺织品仅具有辐射功能,无法在所有情况下实现高效冷却,特别是在高温和高湿度环境下,非辐射冷却能力会减弱。这项工作提出了一种多模态超冷纺织品,通过3D包覆策略整合了辐射、传导和蒸发机制,以在不影响辐射性能的情况下增强各种场景下的冷却效果。这种方法使所有一维单纤维的表面都能被二维氮化硼纳米片紧密地3D包覆,从而通过高背散射效率、3D导热网络结构和Janus润湿结构实现超高的太阳反射率(97.30%)、全方位散热(面内和面外热导率分别为2.40和0.33 W m K)以及单向吸湿排汗性能(传输指数为1547%)。通过多种冷却机制,与棉相比,多模态超冷纺织品在户外阳光下能使温度降低20°C。即使在炎热潮湿的环境中,它仍比棉具有2°C的冷却优势。因此,这项工作为跨各种复杂环境的个人热湿管理纺织品提供了一种有前景的策略。