Suppr超能文献

增强的代谢纠缠在一个跨界微生物群落的演化过程中出现。

Enhanced metabolic entanglement emerges during the evolution of an interkingdom microbial community.

机构信息

Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.

出版信息

Nat Commun. 2024 Aug 22;15(1):7238. doi: 10.1038/s41467-024-51702-1.

Abstract

While different stages of mutualism can be observed in natural communities, the dynamics and mechanisms underlying the gradual erosion of independence of the initially autonomous organisms are not yet fully understood. In this study, by conducting the laboratory evolution on an engineered microbial community, we reproduce and molecularly track the stepwise progression towards enhanced partner entanglement. We observe that the evolution of the community both strengthens the existing metabolic interactions and leads to the emergence of de novo interdependence between partners for nitrogen metabolism, which is a common feature of natural symbiotic interactions. Selection for enhanced metabolic entanglement during the community evolution repeatedly occurred indirectly, via pleiotropies and trade-offs within cellular regulatory networks, and with no evidence of group selection. The indirect positive selection of metabolic dependencies between microbial community members, which results from the direct selection of other coupled traits in the same regulatory network, may therefore be a common but underappreciated driving force guiding the evolution of natural mutualistic communities.

摘要

虽然在自然群落中可以观察到互惠关系的不同阶段,但对于最初自主的生物体独立性逐渐丧失的动态和机制还不完全清楚。在这项研究中,我们通过对工程微生物群落进行实验室进化,重现并分子追踪了向增强伙伴纠缠逐步发展的过程。我们观察到,群落的进化既加强了现有的代谢相互作用,又导致了氮代谢中伙伴之间新出现的相互依存关系,这是自然共生相互作用的一个共同特征。在群落进化过程中,通过细胞调控网络中的多效性和权衡,间接地选择增强代谢纠缠,而没有群体选择的证据。微生物群落成员之间代谢依赖性的间接正选择,是由于同一调控网络中其他耦合特征的直接选择所致,因此,它可能是指导自然互惠群落进化的一个共同但被低估的驱动力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7723/11341674/6701a5363bb9/41467_2024_51702_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验