文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用机器学习方法评估cT1-T2期乳腺癌腋窝淋巴结负荷及预后:一项回顾性双机构MRI研究

Assessing Axillary Lymph Node Burden and Prognosis in cT1-T2 Stage Breast Cancer Using Machine Learning Methods: A Retrospective Dual-Institutional MRI Study.

作者信息

Liao Jiayi, Xu Zeyan, Xie Yu, Liang Yanting, Hu Qingru, Liu Chunling, Yan Lifen, Diao Wenjun, Liu Zaiyi, Wu Lei, Liang Changhong

机构信息

Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.

Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

出版信息

J Magn Reson Imaging. 2025 Mar;61(3):1221-1231. doi: 10.1002/jmri.29554. Epub 2024 Aug 22.


DOI:10.1002/jmri.29554
PMID:39175033
Abstract

BACKGROUND: Pathological axillary lymph node (pALN) burden is an important factor for treatment decision-making in clinical T1-T2 (cT1-T2) stage breast cancer. Preoperative assessment of the pALN burden and prognosis aids in the individualized selection of therapeutic approaches. PURPOSE: To develop and validate a machine learning (ML) model based on clinicopathological and MRI characteristics for assessing pALN burden and survival in patients with cT1-T2 stage breast cancer. STUDY TYPE: Retrospective. POPULATION: A total of 506 females (range: 24-83 years) with cT1-T2 stage breast cancer from two institutions, forming the training (N = 340), internal validation (N = 85), and external validation cohorts (N = 81), respectively. FIELD STRENGTH/SEQUENCE: This study used 1.5-T, axial fat-suppressed T2-weighted turbo spin-echo sequence and axial three-dimensional dynamic contrast-enhanced fat-suppressed T1-weighted gradient echo sequence. ASSESSMENT: Four ML methods (eXtreme Gradient Boosting [XGBoost], Support Vector Machine, k-Nearest Neighbor, Classification and Regression Tree) were employed to develop models based on clinicopathological and MRI characteristics. The performance of these models was evaluated by their discriminative ability. The best-performing model was further analyzed to establish interpretability and used to calculate the pALN score. The relationships between the pALN score and disease-free survival (DFS) were examined. STATISTICAL TESTS: Chi-squared test, Fisher's exact test, univariable logistic regression, area under the curve (AUC), Delong test, net reclassification improvement, integrated discrimination improvement, Hosmer-Lemeshow test, log-rank, Cox regression analyses, and intraclass correlation coefficient were performed. A P-value <0.05 was considered statistically significant. RESULTS: The XGB II model, developed based on the XGBoost algorithm, outperformed the other models with AUCs of 0.805, 0.803, and 0.818 in the three cohorts. The Shapley additive explanation plot indicated that the top variable in the XGB II model was the Node Reporting and Data System score. In multivariable Cox regression analysis, the pALN score was significantly associated with DFS (hazard ratio: 4.013, 95% confidence interval: 1.059-15.207). DATA CONCLUSION: The XGB II model may allow to evaluate pALN burden and could provide prognostic information in cT1-T2 stage breast cancer patients. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

摘要

背景:病理性腋窝淋巴结(pALN)负荷是临床T1-T2(cT1-T2)期乳腺癌治疗决策的重要因素。术前评估pALN负荷和预后有助于个体化选择治疗方法。 目的:开发并验证一种基于临床病理和MRI特征的机器学习(ML)模型,用于评估cT1-T2期乳腺癌患者的pALN负荷和生存率。 研究类型:回顾性研究。 研究对象:来自两个机构的共506名女性(年龄范围:24-83岁),她们患有cT1-T2期乳腺癌,分别组成训练队列(N = 340)、内部验证队列(N = 85)和外部验证队列(N = 81)。 场强/序列:本研究使用1.5-T、轴向脂肪抑制T2加权快速自旋回波序列和轴向三维动态对比增强脂肪抑制T1加权梯度回波序列。 评估:采用四种ML方法(极端梯度提升[XGBoost]、支持向量机、k近邻、分类与回归树)基于临床病理和MRI特征开发模型。通过这些模型的判别能力评估其性能。对表现最佳的模型进行进一步分析以建立可解释性,并用于计算pALN评分。研究pALN评分与无病生存期(DFS)之间的关系。 统计检验:进行卡方检验、Fisher精确检验、单变量逻辑回归、曲线下面积(AUC)、德龙检验、净重新分类改善、综合判别改善、Hosmer-Lemeshow检验、对数秩检验、Cox回归分析和组内相关系数分析。P值<0.05被认为具有统计学意义。 结果:基于XGBoost算法开发的XGB II模型在三个队列中的AUC分别为0.805、0.803和0.818,优于其他模型。Shapley加性解释图表明,XGB II模型中的首要变量是淋巴结报告和数据系统评分。在多变量Cox回归分析中,pALN评分与DFS显著相关(风险比:4.013,95%置信区间:1.059-15.207)。 数据结论:XGB II模型可用于评估cT1-T2期乳腺癌患者的pALN负荷,并能提供预后信息。 证据水平:3 技术疗效:2级

相似文献

[1]
Assessing Axillary Lymph Node Burden and Prognosis in cT1-T2 Stage Breast Cancer Using Machine Learning Methods: A Retrospective Dual-Institutional MRI Study.

J Magn Reson Imaging. 2025-3

[2]
Using Machine Learning Methods to Assess Lymphovascular Invasion and Survival in Breast Cancer: Performance of Combining Preoperative Clinical and MRI Characteristics.

J Magn Reson Imaging. 2023-11

[3]
Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis.

J Ultrasound Med. 2024-9

[4]
MRI characteristics of breast edema for assessing axillary lymph node burden in early-stage breast cancer: a retrospective bicentric study.

Eur Radiol. 2022-12

[5]
Habitat Radiomics Based on Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Assessing Axillary Lymph Node Burden in Clinical T1-T2 Stage Breast Cancer: A Multicenter and Interpretable Study.

J Magn Reson Imaging. 2025-4-21

[6]
MRI-Based Kinetic Heterogeneity Evaluation in the Accurate Access of Axillary Lymph Node Status in Breast Cancer Using a Hybrid CNN-RNN Model.

J Magn Reson Imaging. 2024-10

[7]
Comparative Analysis of Nomogram and Machine Learning Models for Predicting Axillary Lymph Node Metastasis in Early-Stage Breast Cancer: A Study on Clinically and Ultrasound-Negative Axillary Cases Across Two Centers.

Ultrasound Med Biol. 2025-3

[8]
Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer.

JAMA Netw Open. 2020-12-1

[9]
Preoperative MRI Features Associated With Axillary Nodal Burden and Disease-Free Survival in Patients With Early-Stage Breast Cancer.

Korean J Radiol. 2024-9

[10]
Differentiating axillary lymph node metastasis in invasive breast cancer patients: A comparison of radiomic signatures from multiparametric breast MR sequences.

J Magn Reson Imaging. 2019-3-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索