Suppr超能文献

使用深部脑刺激和机器学习进行运动障碍的自动睡眠检测。

Automated Sleep Detection in Movement Disorders Using Deep Brain Stimulation and Machine Learning.

机构信息

Department of Medicine, University of Toronto, Toronto, Ontario, Canada.

School of Medicine, University College Dublin, Dublin, Ireland.

出版信息

Mov Disord. 2024 Nov;39(11):2097-2102. doi: 10.1002/mds.29987. Epub 2024 Aug 23.

Abstract

BACKGROUND

Automated sleep detection in movement disorders may allow monitoring sleep, potentially guiding adaptive deep brain stimulation (DBS).

OBJECTIVES

The aims were to compare wake-versus-sleep status (WSS) local field potentials (LFP) in a home environment and develop biomarkers of WSS in Parkinson's disease (PD), essential tremor (ET), and Tourette's syndrome (TS) patients.

METHODS

Five PD, 2 ET, and 1 TS patient were implanted with Medtronic Percept (3 STN [subthalamic nucleus], 3 GPi [globus pallidus interna], and 2 ventral intermediate nucleus). Over five to seven nights, β-band (12.5-30 Hz) and/or α-band (7-12 Hz) LFP power spectral densities were recorded. Wearable actigraphs tracked sleep.

RESULTS

From sleep to wake, PD LFP β-power increased in STN and decreased in GPi, and α-power increased in both. Machine learning classifiers were trained. For PD, the highest WSS accuracy was 93% (F1 = 0.93), 86% across all patients (F1 = 0.86). The maximum accuracy was 86% for ET and 89% for TS.

CONCLUSION

Chronic intracranial narrowband recordings can accurately identify sleep in various movement disorders and targets in this proof-of-concept study. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

摘要

背景

运动障碍患者的自动睡眠检测可实现睡眠监测,这可能有助于指导适应性深部脑刺激(DBS)。

目的

本研究旨在比较运动障碍患者在家庭环境中的清醒与睡眠状态(WSS)局部场电位(LFP),并开发帕金森病(PD)、特发性震颤(ET)和妥瑞氏综合征(TS)患者 WSS 的生物标志物。

方法

本研究纳入了 5 名 PD、2 名 ET 和 1 名 TS 患者,这些患者均植入了美敦力 Percept(3 个 STN[丘脑底核]、3 个 GPi[苍白球内侧部]和 2 个腹侧中间核)。在五到七个晚上,β 频段(12.5-30Hz)和/或 α 频段(7-12Hz)的 LFP 功率谱密度被记录下来。可穿戴活动监测器追踪了睡眠情况。

结果

从睡眠到清醒,PD 的 LFPβ 功率在 STN 中增加,在 GPi 中减少,α 功率在两者中均增加。机器学习分类器接受了训练。对于 PD,WSS 的最高准确率为 93%(F1=0.93),所有患者的准确率为 86%(F1=0.86)。ET 的最大准确率为 86%,TS 的最大准确率为 89%。

结论

在这项概念验证研究中,慢性颅内窄带记录可以准确识别各种运动障碍患者的睡眠状态以及目标状态。 © 2024 作者。运动障碍由 Wiley 期刊公司代表国际帕金森病和运动障碍协会出版。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验