Pediatrics Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, 77030, USA.
Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
Plant J. 2024 Sep;119(6):2982-2999. doi: 10.1111/tpj.16966. Epub 2024 Aug 23.
Calcium (Ca) is essential for plant growth and cellular homeostasis, with cation exchangers (CAXs) regulating Ca transport into plant vacuoles. In Arabidopsis, multiple CAXs feature a common structural arrangement, comprising an N-terminal autoinhibitory domain followed by two pseudosymmetrical modules. Mutations in CAX1 enhance stress tolerance, notably tolerance to anoxia (a condition marked by oxygen depletion), crucial for flood resilience. Here we engineered a dominant-negative CAX1 variant, named ½N-CAX1, incorporating the autoinhibitory domain and the N-terminal pseudosymmetrical module, which, when expressed in wild-type Arabidopsis plants, phenocopied the anoxia tolerance of cax1. Physiological evaluations, yeast assays, and calcium imaging demonstrated that wild-type plants expressing ½N-CAX1 have phenotypes consistent with inhibition of CAX1, which is likely through direct interaction of ½N-CAX1 with CAX1. Eliminating segments within the N-terminal pseudosymmetrical module, as well as incorporating modules from other plant CAXs and expressing these variants into wild-type plants, failed to produce anoxia tolerance. This underscores the requirement for both the CAX1 autoinhibitory domain and the intact pseudosymmetrical module to produce the dominant-negative phenotype. Our study elucidates the interaction of this ½N-CAX1 variant with CAX1 and its impact on anoxia tolerance, offering insights into further approaches for engineering plant stress tolerance.
钙(Ca)对植物生长和细胞内稳态至关重要,阳离子交换器(CAX)调节 Ca 向植物液泡的转运。在拟南芥中,多个 CAX 具有共同的结构排列,包括一个 N 端自动抑制结构域,其后是两个伪对称模块。CAX1 的突变增强了植物的应激耐受性,特别是对缺氧(一种氧气耗尽的情况)的耐受性,这对于洪水恢复至关重要。在这里,我们构建了一个显性负 CAX1 变体,命名为 ½N-CAX1,包含自动抑制结构域和 N 端伪对称模块,当在野生型拟南芥植物中表达时,其表型与 cax1 的缺氧耐受性相似。生理评估、酵母测定和钙成像表明,表达 ½N-CAX1 的野生型植物的表型与 CAX1 的抑制一致,这可能是通过 ½N-CAX1 与 CAX1 的直接相互作用。在 N 端伪对称模块内消除片段,以及将模块从其他植物 CAX 中引入并将这些变体表达到野生型植物中,都不能产生缺氧耐受性。这突出了产生显性负表型既需要 CAX1 的自动抑制结构域又需要完整的伪对称模块。我们的研究阐明了这种 ½N-CAX1 变体与 CAX1 的相互作用及其对缺氧耐受性的影响,为进一步设计植物应激耐受性提供了思路。