Suppr超能文献

一种使用钯催化的铃木-宫浦交叉偶联反应合成吲唑化合物的高效简便方法。

An efficient and simple approach for synthesizing indazole compounds using palladium-catalyzed Suzuki-Miyaura cross-coupling.

作者信息

Gopi Bandaru, Vijayakumar Vijayaparthasarathi

机构信息

Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 India

出版信息

RSC Adv. 2024 Aug 22;14(36):26494-26504. doi: 10.1039/d4ra04633a. eCollection 2024 Aug 16.

Abstract

A series of indazole derivatives (6a-6i and 7a-7i) has been synthesized using Suzuki Miyaura cross-coupling with a palladium catalyst from readily available starting materials. An efficient and reliable methodology was employed for the synthesis, and the compounds were thoroughly characterized using H NMR, C NMR, FT-IR, and HRMS analysis to confirm their structural integrity and purity. Density function theory (DFT) computation identified four compounds (6g, 6h, 7g, and 7h) with significant energy band gaps. Additionally, the molecular electrostatic potential study highlighted the distinct electrical characteristics of these indazole molecules. Subsequent molecular docking investigations were carried out using the AUTODOCK method with two separate protein data bank (PDB) structures (6FEW, 4WA9) involved in renal cancer pathways. The results showed that eight substances PDB: 6FEW (6g, 6h, 7g, and 7h) and PDB: 4WA9 (6a, 6c, and 7c, 7g) had the highest binding energies, indicating their potential as therapeutic agents for treating kidney cancer.

摘要

使用钯催化剂通过铃木-宫浦交叉偶联反应,从易得的起始原料合成了一系列吲唑衍生物(6a - 6i和7a - 7i)。采用了一种高效且可靠的方法进行合成,并使用氢核磁共振(¹H NMR)、碳核磁共振(¹³C NMR)、傅里叶变换红外光谱(FT - IR)和高分辨质谱(HRMS)分析对化合物进行了全面表征,以确认其结构完整性和纯度。密度泛函理论(DFT)计算确定了四种具有显著能带隙的化合物(6g、6h、7g和7h)。此外,分子静电势研究突出了这些吲唑分子独特的电学特性。随后,使用AUTODOCK方法对参与肾癌途径的两个不同蛋白质数据库(PDB)结构(6FEW、4WA9)进行了分子对接研究。结果表明,八种物质PDB: 6FEW(6g、6h、7g和7h)和PDB: 4WA9(6a、6c、7c、7g)具有最高的结合能,表明它们作为治疗肾癌的治疗剂的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876d/11339776/5b6602c03301/d4ra04633a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验