Suppr超能文献

使用随机森林模型预测原始和有缺陷的碳纳米管的力学性能。

Predicting the mechanical properties of pristine and defective carbon nanotubes using a random forest model.

作者信息

Ibn Malek Ihtesham, Sarkar Koushik, Zubair Ahmed

机构信息

Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh

出版信息

Nanoscale Adv. 2024 Aug 2;6(20):5112-32. doi: 10.1039/d4na00405a.

Abstract

Data-driven models have lately emerged as a faster and less time-consuming method for computing material properties than computationally expensive conventional molecular dynamics and density functional theory-based simulations. Here, we developed a random forest (RF) model for comprehensively predicting mechanical properties such as stress and Poisson's ratio under varying strain and ultimate tensile strain of pristine and defective carbon nanotubes (CNTs). The variations in stress and Poisson's ratio with the strain of CNTs with a 0.4-2 nm diameter range were calculated by classical molecular dynamics simulations and characterized using parameters extracted from fitting polynomial equations. The fitting parameters and ultimate tensile strength showed distinct dependency on chiral indices, chiral angles, radii, and the presence of defects in CNTs, which constituted the target dataset. The dataset features were selected through principal component analysis, and the correlation with targets was scrutinized. We performed a comparative analysis of different machine learning algorithms for predicting mechanical properties, revealing the RF model as the best-performing algorithm. The RMSE for the stress-strain curve had a maximum value of 0.013 and 0.0143 for pristine and defective CNTs, respectively, while the correlation coefficients were ≫ 0.99 for all CNTs, showcasing the excellent predictive power of the model. The model made excellent predictions of properties for CNTs with diameters >2 nm, which is beyond the training dataset range, demonstrating the robustness of the model as a substitute for MD simulation. The insight gained from this study will benefit the research of nanocomposites, nanoelectronics, and nanomechanical systems incorporating CNTs.

摘要

与计算成本高昂的传统分子动力学和基于密度泛函理论的模拟相比,数据驱动模型最近已成为一种计算材料属性的更快且耗时更少的方法。在此,我们开发了一种随机森林(RF)模型,用于全面预测原始和有缺陷的碳纳米管(CNT)在不同应变和极限拉伸应变下的应力和泊松比等力学性能。通过经典分子动力学模拟计算了直径范围为0.4 - 2 nm的CNT的应力和泊松比随应变的变化,并使用从拟合多项式方程中提取的参数进行表征。拟合参数和极限拉伸强度对CNT的手性指数、手性角、半径以及缺陷的存在表现出明显的依赖性,这些构成了目标数据集。通过主成分分析选择数据集特征,并仔细研究其与目标的相关性。我们对预测力学性能的不同机器学习算法进行了比较分析,结果表明RF模型是性能最佳的算法。原始和有缺陷的CNT的应力 - 应变曲线的均方根误差(RMSE)分别最大值为0.013和0.0143,而所有CNT的相关系数均≫ 0.99,展示了该模型出色的预测能力。该模型对直径>2 nm的CNT的性能做出了出色预测,这超出了训练数据集范围,证明了该模型作为MD模拟替代方法的稳健性。本研究获得的见解将有益于包含CNT的纳米复合材料、纳米电子学和纳米机械系统的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ea/11460595/e5eb7495bc96/d4na00405a-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验