Suppr超能文献

基于机器学习原子间势的石墨烯/硼烯异质结构力学性能的第一性原理多尺度建模

First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials.

作者信息

Mortazavi Bohayra, Silani Mohammad, Podryabinkin Evgeny V, Rabczuk Timon, Zhuang Xiaoying, Shapeev Alexander V

机构信息

Chair of Computational Science and Simulation Technology, Institute of Photonics, Department of Mathematics and Physics, Leibniz Universität Hannover, Appelstraße 11, 30167, Hannover, Germany.

Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering-Innovation Across Disciplines), Gottfried Wilhelm Leibniz Universität Hannover, 30169, Hannover, Germany.

出版信息

Adv Mater. 2021 Sep;33(35):e2102807. doi: 10.1002/adma.202102807. Epub 2021 Jul 23.

Abstract

Density functional theory calculations are robust tools to explore the mechanical properties of pristine structures at their ground state but become exceedingly expensive for large systems at finite temperatures. Classical molecular dynamics (CMD) simulations offer the possibility to study larger systems at elevated temperatures, but they require accurate interatomic potentials. Herein the authors propose the concept of first-principles multiscale modeling of mechanical properties, where ab initio level of accuracy is hierarchically bridged to explore the mechanical/failure response of macroscopic systems. It is demonstrated that machine-learning interatomic potentials (MLIPs) fitted to ab initio datasets play a pivotal role in achieving this goal. To practically illustrate this novel possibility, the mechanical/failure response of graphene/borophene coplanar heterostructures is examined. It is shown that MLIPs conveniently outperform popular CMD models for graphene and borophene and they can evaluate the mechanical properties of pristine and heterostructure phases at room temperature. Based on the information provided by the MLIP-based CMD, continuum models of heterostructures using the finite element method can be constructed. The study highlights that MLIPs were the missing block for conducting first-principles multiscale modeling, and their employment empowers a straightforward route to bridge ab initio level accuracy and flexibility to explore the mechanical/failure response of nanostructures at continuum scale.

摘要

密度泛函理论计算是探索原始结构基态力学性能的强大工具,但对于有限温度下的大型系统来说成本过高。经典分子动力学(CMD)模拟为研究高温下的大型系统提供了可能性,但它们需要精确的原子间势。在此,作者提出了力学性能的第一性原理多尺度建模概念,其中从头算精度水平通过层次化方式衔接,以探索宏观系统的力学/失效响应。结果表明,拟合从头算数据集的机器学习原子间势(MLIPs)在实现这一目标中起着关键作用。为了实际说明这种新的可能性,研究了石墨烯/硼烯共面异质结构的力学/失效响应。结果表明,MLIPs在性能上明显优于用于石墨烯和硼烯的常用CMD模型,并且它们可以在室温下评估原始相和异质结构相的力学性能。基于基于MLIP的CMD提供的信息,可以构建使用有限元方法的异质结构连续体模型。该研究强调,MLIPs是进行第一性原理多尺度建模缺失的环节,它们的应用为在连续尺度上衔接从头算精度水平和灵活性以探索纳米结构的力学/失效响应提供了一条直接途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7932/11469135/3284161abc45/ADMA-33-2102807-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验