Suppr超能文献

用于联合优化延迟和能耗的移动边缘计算卸载策略研究。

Research on MEC computing offload strategy for joint optimization of delay and energy consumption.

作者信息

Ni Mingchang, Zhang Guo, Yang Qi, Yin Liqiong

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China.

Kunming Iron & Steel Holding Co., Ltd. Kunming 650302, China.

出版信息

Math Biosci Eng. 2024 Jun 17;21(6):6336-6358. doi: 10.3934/mbe.2024276.

Abstract

The decision-making process for computational offloading is a critical aspect of mobile edge computing, and various offloading decision strategies are strongly linked to the calculated latency and energy consumption of the mobile edge computing system. This paper proposes an offloading scheme based on an enhanced sine-cosine optimization algorithm (SCAGA) designed for the "edge-end" architecture scenario within edge computing. The research presented in this paper covers the following aspects: (1) Establishment of computational resource allocation models and computational cost models for edge computing scenarios; (2) Introduction of an enhanced sine and cosine optimization algorithm built upon the principles of Levy flight strategy sine and cosine optimization algorithms, incorporating concepts from roulette wheel selection and gene mutation commonly found in genetic algorithms; (3) Execution of simulation experiments to evaluate the SCAGA-based offloading scheme, demonstrating its ability to effectively reduce system latency and optimize offloading utility. Comparative experiments also highlight improvements in system latency, mobile user energy consumption, and offloading utility when compared to alternative offloading schemes.

摘要

计算卸载的决策过程是移动边缘计算的一个关键方面,各种卸载决策策略与移动边缘计算系统的计算延迟和能耗密切相关。本文针对边缘计算中的“边缘-终端”架构场景,提出了一种基于增强型正弦余弦优化算法(SCAGA)的卸载方案。本文的研究涵盖以下几个方面:(1)建立边缘计算场景的计算资源分配模型和计算成本模型;(2)引入一种基于莱维飞行策略正弦余弦优化算法原理构建的增强型正弦余弦优化算法,融入遗传算法中常见的轮盘赌选择和基因突变概念;(3)进行仿真实验以评估基于SCAGA的卸载方案,证明其有效降低系统延迟和优化卸载效用的能力。对比实验还突出了与其他卸载方案相比,该方案在系统延迟、移动用户能耗和卸载效用方面的改进。

相似文献

1
Research on MEC computing offload strategy for joint optimization of delay and energy consumption.
Math Biosci Eng. 2024 Jun 17;21(6):6336-6358. doi: 10.3934/mbe.2024276.
4
Efficient Multiuser Computation for Mobile-Edge Computing in IoT Application Using Optimization Algorithm.
Appl Bionics Biomech. 2021 Nov 10;2021:9014559. doi: 10.1155/2021/9014559. eCollection 2021.
5
Collaborative Task Offloading and Service Caching Strategy for Mobile Edge Computing.
Sensors (Basel). 2022 Sep 7;22(18):6760. doi: 10.3390/s22186760.
8
A Bilevel Optimization Approach for Joint Offloading Decision and Resource Allocation in Cooperative Mobile Edge Computing.
IEEE Trans Cybern. 2020 Oct;50(10):4228-4241. doi: 10.1109/TCYB.2019.2916728. Epub 2019 Jun 19.
9
Energy-Optimal Latency-Constrained Application Offloading in Mobile-Edge Computing.
Sensors (Basel). 2020 May 28;20(11):3064. doi: 10.3390/s20113064.
10
A deep reinforcement learning-based wireless body area network offloading optimization strategy for healthcare services.
Health Inf Sci Syst. 2023 Jan 28;11(1):8. doi: 10.1007/s13755-023-00212-3. eCollection 2023 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验