Mobile Internet of Things and Radio Frequency Identification Technology Key Laboratory of Mianyang (MIOT&RFID), Mianyang 621010, China.
RFID & IOT Laboratory, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China.
Sensors (Basel). 2023 Feb 25;23(5):2565. doi: 10.3390/s23052565.
With the emergence of more and more computing-intensive and latency-sensitive applications, insufficient computing power and energy of user devices has become a common phenomenon. Mobile edge computing (MEC) is an effective solution to this phenomenon. MEC improves task execution efficiency by offloading some tasks to edge servers for execution. In this paper, we consider a device-to-device technology (D2D)-enabled MEC network communication model, and study the subtask offloading strategy and the transmitting power allocation strategy of users. The objective function is to minimize the weighted sum of the average completion delay and average energy consumption of users, which is a mixed integer nonlinear problem. We first propose an enhanced particle swarm optimization algorithm (EPSO) to optimize the transmit power allocation strategy. Then, we utilize the Genetic Algorithm (GA) to optimize the subtask offloading strategy. Finally, we propose an alternate optimization algorithm (EPSO-GA) to jointly optimize the transmit power allocation strategy and the subtask offloading strategy. The simulation results show that the EPSO-GA outperforms other comparative algorithms in terms of the average completion delay, average energy consumption, and average cost. In addition, no matter how the weight coefficients of delay and energy consumption change, the average cost of the EPSO-GA is the least.
随着越来越多的计算密集型和延迟敏感型应用的出现,用户设备的计算能力和能量不足已成为普遍现象。移动边缘计算 (MEC) 是解决这一现象的有效方法。MEC 通过将部分任务卸载到边缘服务器执行来提高任务执行效率。在本文中,我们考虑了一种设备到设备技术 (D2D) 启用的 MEC 网络通信模型,并研究了用户的子任务卸载策略和传输功率分配策略。目标函数是最小化用户的平均完成延迟和平均能耗的加权和,这是一个混合整数非线性问题。我们首先提出了一种增强粒子群优化算法 (EPSO) 来优化传输功率分配策略。然后,我们利用遗传算法 (GA) 来优化子任务卸载策略。最后,我们提出了一种交替优化算法 (EPSO-GA) 来联合优化传输功率分配策略和子任务卸载策略。仿真结果表明,在平均完成延迟、平均能耗和平均成本方面,EPSO-GA 优于其他对比算法。此外,无论延迟和能耗的权重系数如何变化,EPSO-GA 的平均成本都是最低的。