Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States.
ACS Biomater Sci Eng. 2024 Sep 9;10(9):5752-5763. doi: 10.1021/acsbiomaterials.4c01005. Epub 2024 Aug 23.
Although nanoparticle-based lymphatic drug delivery systems promise better treatment of cancer, infectious disease, and immune disease, their clinical translations are limited by low delivery efficiencies and unclear transport mechanisms. Here, we employed a three-dimensional (3D) lymphatics-on-a-chip featuring an engineered lymphatic vessel (LV) capable of draining interstitial fluids including nanoparticles. We tested lymphatic drainage of different sizes (30, 50, and 70 nm) of PLGA--PEG nanoparticles (NPs) using the lymphatics-on-a-chip device. In this study, we discovered that smaller NPs (30 and 50 nm) transported faster than larger NPs (70 nm) through the interstitial space, as expected, but the smaller NPs were captured by lymphatic endothelial cells (LECs) and accumulated within their cytosol, delaying NP transport into the lymphatic lumen, which was not observed in larger NPs. To examine the mechanisms of size-dependent NP transports, we employed four inhibitors, dynasore, nystatin, amiloride, and adrenomedullin, to selectively block dynamin-, caveolin-, macropinocytosis-mediated endocytosis-, and cell junction-mediated paracellular transport. Inhibiting dynamin using dynasore enhanced the transport of smaller NPs (30 and 50 nm) into the lymphatic lumen, minimizing cytosolic accumulation, but showed no effect on larger NP transport. Interestingly, the inhibition of caveolin by nystatin decreased the lymphatic transport of larger NPs without affecting the smaller NP transport, indicating distinct endocytosis mechanisms used by different sizes of NPs. Macropinocytosis inhibition by amiloride did not change the drainage of all sizes of NPs; however, paracellular transport inhibition by adrenomedullin blocked the lymphatic transport of NPs of all sizes. We further revealed that smaller NPs were captured in the Rab7-positive late-stage lymphatic endosomes to delay their lymphatic drainage, which was reversed by dynamin inhibition, suggesting that Rab7 is a potential target to enhance the lymphatic delivery of smaller NPs. Together, our 3D lymphatics-on-a-chip model unveils size-dependent NP transport mechanisms in lymphatic drug delivery.
尽管基于纳米粒子的淋巴递药系统有望改善癌症、传染病和自身免疫性疾病的治疗效果,但由于递药效率低和转运机制不明确,其临床转化受到限制。在这里,我们采用了一种具有工程化淋巴管(LV)的 3D 淋巴模型,该淋巴管能够引流包括纳米粒子在内的间质液。我们使用淋巴芯片模型测试了不同大小(30、50 和 70nm)PLGA-PEG 纳米粒子(NPs)的淋巴引流。在这项研究中,我们发现较小的 NPs(30 和 50nm)比较大的 NPs(70nm)更快地穿过间质空间,这是预期的,但较小的 NPs 被淋巴管内皮细胞(LECs)捕获并积累在其细胞质中,从而延迟了 NP 进入淋巴管腔的运输,而在较大的 NPs 中则没有观察到这种情况。为了研究尺寸依赖性 NP 转运的机制,我们使用了四种抑制剂——dynasore、制霉菌素、阿米洛利和肾上腺髓质素,以选择性地阻断网格蛋白、巨胞饮介导的内吞作用、细胞连接介导的细胞旁转运。用 dynasore 抑制 dynamin 增强了较小 NPs(30 和 50nm)进入淋巴管腔的转运,使细胞质内的积累最小化,但对较大 NPs 的转运没有影响。有趣的是,制霉菌素抑制 caveolin 减少了较大 NPs 的淋巴转运,而不影响较小 NP 的转运,表明不同大小的 NPs 采用了不同的内吞作用机制。阿米洛利抑制巨胞饮作用并没有改变所有大小 NPs 的引流;然而,肾上腺髓质素抑制细胞旁转运阻止了所有大小 NPs 的淋巴转运。我们进一步揭示了较小的 NPs 被 Rab7 阳性的晚期淋巴管内体捕获,从而延迟了它们的淋巴引流,这一过程可以通过 dynamin 抑制来逆转,这表明 Rab7 是增强较小 NPs 淋巴递药的潜在靶点。总之,我们的 3D 淋巴模型揭示了淋巴递药中 NP 转运的尺寸依赖性机制。