文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

推进靶向癌症纳米药物的工程设计策略。

Advancing engineering design strategies for targeted cancer nanomedicine.

作者信息

Gomerdinger Victoria F, Nabar Namita, Hammond Paula T

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Rev Cancer. 2025 Aug 1. doi: 10.1038/s41568-025-00847-2.


DOI:10.1038/s41568-025-00847-2
PMID:40751005
Abstract

Engineered nanoparticles have greatly expanded cancer treatment by encapsulating and delivering therapeutic and diagnostic agents, otherwise limited by poor pharmacokinetics and toxicity, to target tumour cells. Leveraging our increased understanding of the tumour microenvironment, nanomedicine has expanded to additionally target key tissues and cells implicated in tumorigenesis, such as immune and stromal cells, to improve potency and further mitigate off-target toxicities. To design nanocarriers that overcome the body's physiological barriers to access tumours, the field has explored broader routes of administration and nanoparticle design principles, beyond the enhanced permeation and retention effect. This Review explores the advantages of non-covalent surface modifications of nanoparticles, along with other surface modifications, to modulate nanoparticle trafficking from the injection site, into tumour and lymphoid tissues, to the target cell, and ultimately its subcellular fate. Using electrostatic or other non-covalent techniques, nanoparticle surfaces can be decorated with native and synthetic macromolecules that confer highly precise cell and tissue trafficking. Rational design can additionally minimize detection and clearance by the immune system and prolong half-life - key to maximizing efficacy of therapeutic cargos. Finally, we outline how cancer nanomedicine continues to evolve by incorporating learnings from novel screening technologies, computational approaches and patient-level data to design efficacious targeted therapies.

摘要

工程纳米颗粒通过包裹和递送治疗与诊断药物极大地扩展了癌症治疗手段,否则这些药物会因药代动力学不佳和毒性问题而受到限制,从而靶向肿瘤细胞。借助我们对肿瘤微环境的深入了解,纳米医学已扩展到额外靶向参与肿瘤发生的关键组织和细胞,如免疫细胞和基质细胞,以提高疗效并进一步减轻脱靶毒性。为了设计能够克服身体生理屏障以进入肿瘤的纳米载体,该领域已探索了除增强渗透和滞留效应之外更广泛的给药途径和纳米颗粒设计原则。本综述探讨了纳米颗粒非共价表面修饰以及其他表面修饰的优势,以调节纳米颗粒从注射部位到肿瘤和淋巴组织再到靶细胞的转运,最终确定其亚细胞命运。使用静电或其他非共价技术,纳米颗粒表面可以用天然和合成大分子进行修饰,从而实现高度精确的细胞和组织转运。合理设计还可以最大限度地减少免疫系统的检测和清除,并延长半衰期——这是使治疗药物疗效最大化的关键。最后,我们概述了癌症纳米医学如何通过纳入来自新型筛选技术、计算方法和患者层面数据的知识来持续发展,以设计有效的靶向疗法。

相似文献

[1]
Advancing engineering design strategies for targeted cancer nanomedicine.

Nat Rev Cancer. 2025-8-1

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Machine Learning-Enhanced Nanoparticle Design for Precision Cancer Drug Delivery.

Adv Sci (Weinh). 2025-8

[4]
Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy.

Nanoscale. 2024-10-3

[5]
Chemical Strategies to Modulate and Manipulate RNA Epigenetic Modifications.

Acc Chem Res. 2025-6-3

[6]
Mechanistic insight into nanomedicine for polycystic ovary syndrome.

Mol Biol Rep. 2025-6-21

[7]
Targeted delivery of DAPT using dual antibody functionalized solid lipid nanoparticles for enhanced anti-tumour activity against triple negative breast cancer.

Int J Pharm. 2025-2-10

[8]
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.

Front Immunol. 2025-7-24

[9]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[10]
Emerging nanoparticle-based strategies to provide therapeutic benefits for stroke.

Neural Regen Res. 2025-6-19

本文引用的文献

[1]
The fibroinflammatory response in cancer.

Nat Rev Cancer. 2025-3-17

[2]
Nature-inspired platform nanotechnology for RNA delivery to myeloid cells and their bone marrow progenitors.

Nat Nanotechnol. 2025-4

[3]
Construction and validation of transcription‑factor‑based prognostic signature for TACE non‑response and characterization of tumor microenvironment infiltration in hepatocellular carcinoma.

Oncol Lett. 2024-11-5

[4]
Highly Multiplexed Tissue Imaging in Precision Oncology and Translational Cancer Research.

Cancer Discov. 2024-11-1

[5]
SMaRT M-Seq: an optimized step-by-step protocol for M protein sequencing in monoclonal gammopathies.

Biol Methods Protoc. 2024-10-3

[6]
Pharmacokinetic differences between subcutaneous injection and intradermal microneedle delivery of protein therapeutics.

Eur J Pharm Biopharm. 2024-11

[7]
Liquid biopsy: Comprehensive overview of circulating tumor DNA (Review).

Oncol Lett. 2024-9-13

[8]
Three-Dimensional Lymphatics-on-a-Chip Reveals Distinct, Size-Dependent Nanoparticle Transport Mechanisms in Lymphatic Drug Delivery.

ACS Biomater Sci Eng. 2024-9-9

[9]
Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics.

Nat Rev Mol Cell Biol. 2025-1

[10]
AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery.

Nat Commun. 2024-7-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索