CHU Rennes, INSERM, LTSI-UMR 1099, Univ Rennes, 35000 Rennes, France.
Service de Maladies Infectieuses et Réanimation Médicale, Hôpital Pontchaillou, Université de Rennes, 2, rue Henri Le Guilloux, 35033 Rennes cedex 9, France.
Stud Health Technol Inform. 2024 Aug 22;316:1739-1743. doi: 10.3233/SHTI240763.
Continuous unfractionated heparin is widely used in intensive care, yet its complex pharmacokinetic properties complicate the determination of appropriate doses. To address this challenge, we developed machine learning models to predict over- and under-dosing, based on anti-Xa results, using a monocentric retrospective dataset. The random forest model achieved a mean AUROC of 0.80 [0.77-0.83], while the XGB model reached a mean AUROC of 0.80 [0.76-0.83]. Feature importance was employed to enhance the interpretability of the model, a critical factor for clinician acceptance. After prospective validation, machine learning models such as those developed in this study could be implemented within a computerized physician order entry (CPOE) as a clinical decision support system (CDSS).
连续未分级肝素在重症监护中被广泛应用,但因其复杂的药代动力学特性,使得确定合适的剂量变得复杂。为了解决这一挑战,我们开发了机器学习模型,基于抗 Xa 结果,使用单中心回顾性数据集来预测超量和剂量不足。随机森林模型的平均 AUROC 为 0.80 [0.77-0.83],而 XGB 模型的平均 AUROC 为 0.80 [0.76-0.83]。特征重要性被用来提高模型的可解释性,这是临床医生接受的一个关键因素。经过前瞻性验证,本研究中开发的机器学习模型可以作为临床决策支持系统(CDSS)在计算机化医嘱录入(CPOE)系统中实施。