Suppr超能文献

使用机器学习评估危重症老年患者的疾病严重程度(ELDER-ICU):一项具有亚组偏倚评估的国际多中心研究。

Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation.

机构信息

School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Center for Artificial Intelligence in Medicine, Chinese PLA General Hospital, Beijing, China; Laboratory for Computational Physiology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Anesthesiology, The 920 Hospital of Joint Logistic Support Force of Chinese PLA, Kunming Yunnan, China; Department of Critical Care Medicine, The First Medical Center of PLA General Hospital, Beijing, China.

出版信息

Lancet Digit Health. 2023 Oct;5(10):e657-e667. doi: 10.1016/S2589-7500(23)00128-0. Epub 2023 Aug 18.

Abstract

BACKGROUND

Comorbidity, frailty, and decreased cognitive function lead to a higher risk of death in elderly patients (more than 65 years of age) during acute medical events. Early and accurate illness severity assessment can support appropriate decision making for clinicians caring for these patients. We aimed to develop ELDER-ICU, a machine learning model to assess the illness severity of older adults admitted to the intensive care unit (ICU) with cohort-specific calibration and evaluation for potential model bias.

METHODS

In this retrospective, international multicentre study, the ELDER-ICU model was developed using data from 14 US hospitals, and validated in 171 hospitals from the USA and Netherlands. Data were extracted from the Medical Information Mart for Intensive Care database, electronic ICU Collaborative Research Database, and Amsterdam University Medical Centers Database. We used six categories of data as predictors, including demographics and comorbidities, physical frailty, laboratory tests, vital signs, treatments, and urine output. Patient data from the first day of ICU stay were used to predict in-hospital mortality. We used the eXtreme Gradient Boosting algorithm (XGBoost) to develop models and the SHapley Additive exPlanations method to explain model prediction. The trained model was calibrated before internal, external, and temporal validation. The final XGBoost model was compared against three other machine learning algorithms and five clinical scores. We performed subgroup analysis based on age, sex, and race. We assessed the discrimination and calibration of models using the area under receiver operating characteristic (AUROC) and standardised mortality ratio (SMR) with 95% CIs.

FINDINGS

Using the development dataset (n=50 366) and predictive model building process, the XGBoost algorithm performed the best in all types of validations compared with other machine learning algorithms and clinical scores (internal validation with 5037 patients from 14 US hospitals, AUROC=0·866 [95% CI 0·851-0·880]; external validation in the US population with 20 541 patients from 169 hospitals, AUROC=0·838 [0·829-0·847]; external validation in European population with 2411 patients from one hospital, AUROC=0·833 [0·812-0·853]; temporal validation with 4311 patients from one hospital, AUROC=0·884 [0·869-0·897]). In the external validation set (US population), the median AUROCs of bias evaluations covering eight subgroups were above 0·81, and the overall SMR was 0·99 (0·96-1·03). The top ten risk predictors were the minimum Glasgow Coma Scale score, total urine output, average respiratory rate, mechanical ventilation use, best state of activity, Charlson Comorbidity Index score, geriatric nutritional risk index, code status, age, and maximum blood urea nitrogen. A simplified model containing only the top 20 features (ELDER-ICU-20) had similar predictive performance to the full model.

INTERPRETATION

The ELDER-ICU model reliably predicts the risk of in-hospital mortality using routinely collected clinical features. The predictions could inform clinicians about patients who are at elevated risk of deterioration. Prospective validation of this model in clinical practice and a process for continuous performance monitoring and model recalibration are needed.

FUNDING

National Institutes of Health, National Natural Science Foundation of China, National Special Health Science Program, Health Science and Technology Plan of Zhejiang Province, Fundamental Research Funds for the Central Universities, Drug Clinical Evaluate Research of Chinese Pharmaceutical Association, and National Key R&D Program of China.

摘要

背景

合并症、虚弱和认知功能下降会增加老年患者(65 岁以上)在急性医疗事件中的死亡风险。早期和准确的疾病严重程度评估可以为照顾这些患者的临床医生提供适当的决策支持。我们旨在开发 ELDER-ICU,这是一种机器学习模型,用于评估入住重症监护病房(ICU)的老年患者的疾病严重程度,并针对特定队列进行校准和评估潜在的模型偏差。

方法

在这项回顾性的、国际多中心研究中,使用来自 14 家美国医院的数据开发了 ELDER-ICU 模型,并在美国和荷兰的 171 家医院进行了验证。数据从医疗信息集市重症监护数据库、电子 ICU 协作研究数据库和阿姆斯特丹大学医学中心数据库中提取。我们使用了包括人口统计学和合并症、身体虚弱、实验室检查、生命体征、治疗和尿量在内的六个类别的数据作为预测因子。使用 ICU 入住第一天的患者数据来预测住院死亡率。我们使用极端梯度提升算法(XGBoost)来开发模型,并使用 Shapley 可加解释方法来解释模型预测。在内部、外部和时间验证之前,对训练好的模型进行校准。最终的 XGBoost 模型与其他三种机器学习算法和五种临床评分进行了比较。我们根据年龄、性别和种族进行了亚组分析。我们使用接受者操作特征曲线下的面积(AUROC)和标准化死亡率比(SMR)以及 95%置信区间(CI)来评估模型的区分度和校准。

结果

使用开发数据集(n=50366)和预测模型构建过程,XGBoost 算法在所有类型的验证中均优于其他机器学习算法和临床评分(来自 14 家美国医院的 5037 名患者的内部验证,AUROC=0.866 [95%CI 0.851-0.880];来自 169 家医院的 20141 名美国患者的外部验证,AUROC=0.838 [0.829-0.847];来自一家医院的 2411 名欧洲患者的外部验证,AUROC=0.833 [0.812-0.853];来自一家医院的 4311 名患者的时间验证,AUROC=0.884 [0.869-0.897])。在外部验证集中(美国人群),涵盖八个亚组的偏差评估的中位数 AUROCs 均高于 0.81,总 SMR 为 0.99(0.96-1.03)。前十大风险预测因子是最低格拉斯哥昏迷量表评分、总尿量、平均呼吸率、机械通气使用、最佳活动状态、Charlson 合并症指数评分、老年营养风险指数、代码状态、年龄和最大血尿素氮。仅包含前 20 个特征的简化模型(ELDER-ICU-20)具有与完整模型相似的预测性能。

解释

ELDER-ICU 模型使用常规收集的临床特征可靠地预测住院死亡率的风险。这些预测可以让临床医生了解病情恶化风险较高的患者。需要在临床实践中对该模型进行前瞻性验证,并建立一个连续的性能监测和模型校准的过程。

资助

美国国立卫生研究院、国家自然科学基金、国家特殊卫生科学计划、浙江省卫生科学技术计划、中央高校基本科研业务费、中国药学会药物临床评价研究专业委员会、国家重点研发计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验