Su Longxiang, Liu Chun, Li Dongkai, He Jie, Zheng Fanglan, Jiang Huizhen, Wang Hao, Gong Mengchun, Hong Na, Zhu Weiguo, Long Yun
Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical, Beijing, China.
Digital China Health Technologies Co Ltd, Beijing, China.
JMIR Med Inform. 2020 Jun 22;8(6):e17648. doi: 10.2196/17648.
Heparin is one of the most commonly used medications in intensive care units. In clinical practice, the use of a weight-based heparin dosing nomogram is standard practice for the treatment of thrombosis. Recently, machine learning techniques have dramatically improved the ability of computers to provide clinical decision support and have allowed for the possibility of computer generated, algorithm-based heparin dosing recommendations.
The objective of this study was to predict the effects of heparin treatment using machine learning methods to optimize heparin dosing in intensive care units based on the predictions. Patient state predictions were based upon activated partial thromboplastin time in 3 different ranges: subtherapeutic, normal therapeutic, and supratherapeutic, respectively.
Retrospective data from 2 intensive care unit research databases (Multiparameter Intelligent Monitoring in Intensive Care III, MIMIC-III; e-Intensive Care Unit Collaborative Research Database, eICU) were used for the analysis. Candidate machine learning models (random forest, support vector machine, adaptive boosting, extreme gradient boosting, and shallow neural network) were compared in 3 patient groups to evaluate the classification performance for predicting the subtherapeutic, normal therapeutic, and supratherapeutic patient states. The model results were evaluated using precision, recall, F1 score, and accuracy.
Data from the MIMIC-III database (n=2789 patients) and from the eICU database (n=575 patients) were used. In 3-class classification, the shallow neural network algorithm performed the best (F1 scores of 87.26%, 85.98%, and 87.55% for data set 1, 2, and 3, respectively). The shallow neural network algorithm achieved the highest F1 scores within the patient therapeutic state groups: subtherapeutic (data set 1: 79.35%; data set 2: 83.67%; data set 3: 83.33%), normal therapeutic (data set 1: 93.15%; data set 2: 87.76%; data set 3: 84.62%), and supratherapeutic (data set 1: 88.00%; data set 2: 86.54%; data set 3: 95.45%) therapeutic ranges, respectively.
The most appropriate model for predicting the effects of heparin treatment was found by comparing multiple machine learning models and can be used to further guide optimal heparin dosing. Using multicenter intensive care unit data, our study demonstrates the feasibility of predicting the outcomes of heparin treatment using data-driven methods, and thus, how machine learning-based models can be used to optimize and personalize heparin dosing to improve patient safety. Manual analysis and validation suggested that the model outperformed standard practice heparin treatment dosing.
肝素是重症监护病房中最常用的药物之一。在临床实践中,使用基于体重的肝素剂量计算图是治疗血栓形成的标准做法。最近,机器学习技术极大地提高了计算机提供临床决策支持的能力,并使得基于算法的计算机生成肝素剂量建议成为可能。
本研究的目的是使用机器学习方法预测肝素治疗的效果,以便根据预测结果优化重症监护病房中的肝素剂量。患者状态预测基于活化部分凝血活酶时间的3个不同范围:分别为治疗不足、正常治疗和治疗过度。
分析来自2个重症监护病房研究数据库(重症监护多参数智能监测III,MIMIC-III;电子重症监护病房协作研究数据库,eICU)的回顾性数据。在3个患者组中比较候选机器学习模型(随机森林、支持向量机、自适应增强、极端梯度增强和浅层神经网络),以评估预测治疗不足、正常治疗和治疗过度患者状态的分类性能。使用精确率、召回率、F1分数和准确率评估模型结果。
使用了来自MIMIC-III数据库(n = 2789例患者)和eICU数据库(n = 575例患者)的数据。在3类分类中,浅层神经网络算法表现最佳(数据集1、2和3的F1分数分别为87.26%、85.98%和87.55%)。浅层神经网络算法在患者治疗状态组中获得了最高的F1分数:治疗不足(数据集1:79.35%;数据集2:83.67%;数据集3:83.33%)、正常治疗(数据集1:93.15%;数据集2:87.76%;数据集3:84.62%)和治疗过度(数据集1:88.00%;数据集2:86.54%;数据集3:95.45%)治疗范围。
通过比较多个机器学习模型,找到了预测肝素治疗效果的最合适模型,可用于进一步指导最佳肝素剂量。利用多中心重症监护病房数据,我们的研究证明了使用数据驱动方法预测肝素治疗结果的可行性,因此,基于机器学习的模型可用于优化和个性化肝素剂量,以提高患者安全性。人工分析和验证表明,该模型优于标准做法的肝素治疗剂量。