Suppr超能文献

评估深度学习在前列腺癌自动 Gleason 分级中的性能。

Assessing the Performance of Deep Learning for Automated Gleason Grading in Prostate Cancer.

机构信息

Faculty of Applied Computer Science, University of Augsburg, Germany.

Institute for Digital Medicine, University Hospital Augsburg, Germany.

出版信息

Stud Health Technol Inform. 2024 Aug 22;316:1110-1114. doi: 10.3233/SHTI240605.

Abstract

Prostate cancer is a dominant health concern calling for advanced diagnostic tools. Utilizing digital pathology and artificial intelligence, this study explores the potential of 11 deep neural network architectures for automated Gleason grading in prostate carcinoma focusing on comparing traditional and recent architectures. A standardized image classification pipeline, based on the AUCMEDI framework, facilitated robust evaluation using an in-house dataset consisting of 34,264 annotated tissue tiles. The results indicated varying sensitivity across architectures, with ConvNeXt demonstrating the strongest performance. Notably, newer architectures achieved superior performance, even though with challenges in differentiating closely related Gleason grades. The ConvNeXt model was capable of learning a balance between complexity and generalizability. Overall, this study lays the groundwork for enhanced Gleason grading systems, potentially improving diagnostic efficiency for prostate cancer.

摘要

前列腺癌是一个主要的健康关注点,需要先进的诊断工具。本研究利用数字病理学和人工智能,探索了 11 种深度神经网络架构在前列腺癌自动 Gleason 分级中的应用潜力,重点比较了传统和现代架构。基于 AUCMEDI 框架的标准化图像分类管道,使用内部包含 34264 个注释组织块的数据集进行了稳健的评估。结果表明,不同的架构具有不同的敏感性,其中 ConvNeXt 表现出最强的性能。值得注意的是,即使在区分密切相关的 Gleason 分级方面存在挑战,较新的架构也能实现更好的性能。ConvNeXt 模型能够在复杂性和泛化能力之间取得平衡。总的来说,本研究为增强的 Gleason 分级系统奠定了基础,可能会提高前列腺癌的诊断效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验