Suppr超能文献

多分支CNNFormer:一种预测前列腺癌对激素治疗反应的新型框架。

Multi-branch CNNFormer: a novel framework for predicting prostate cancer response to hormonal therapy.

作者信息

Abdelhalim Ibrahim, Badawy Mohamed Ali, Abou El-Ghar Mohamed, Ghazal Mohammed, Contractor Sohail, van Bogaert Eric, Gondim Dibson, Silva Scott, Khalifa Fahmi, El-Baz Ayman

机构信息

Department of Bioengineering, University of Louisville, Louisville, KY, USA.

Radiology Department, Urology and Nephrology Center, Mansoura, Egypt.

出版信息

Biomed Eng Online. 2024 Dec 23;23(1):131. doi: 10.1186/s12938-024-01325-w.

Abstract

PURPOSE

This study aims to accurately predict the effects of hormonal therapy on prostate cancer (PC) lesions by integrating multi-modality magnetic resonance imaging (MRI) and the clinical marker prostate-specific antigen (PSA). It addresses the limitations of Convolutional Neural Networks (CNNs) in capturing long-range spatial relations and the Vision Transformer (ViT)'s deficiency in localization information due to consecutive downsampling. The research question focuses on improving PC response prediction accuracy by combining both approaches.

METHODS

We propose a 3D multi-branch CNN Transformer (CNNFormer) model, integrating 3D CNN and 3D ViT. Each branch of the model utilizes a 3D CNN to encode volumetric images into high-level feature representations, preserving detailed localization, while the 3D ViT extracts global salient features. The framework was evaluated on a 39-individual patient cohort, stratified by PSA biomarker status.

RESULTS

Our framework achieved remarkable performance in differentiating responders and non-responders to hormonal therapy, with an accuracy of 97.50%, sensitivity of 100%, and specificity of 95.83%. These results demonstrate the effectiveness of the CNNFormer model, despite the cohort's small size.

CONCLUSION

The findings emphasize the framework's potential in enhancing personalized PC treatment planning and monitoring. By combining the strengths of CNN and ViT, the proposed approach offers robust, accurate prediction of PC response to hormonal therapy, with implications for improving clinical decision-making.

摘要

目的

本研究旨在通过整合多模态磁共振成像(MRI)和临床标志物前列腺特异性抗原(PSA),准确预测激素疗法对前列腺癌(PC)病变的影响。它解决了卷积神经网络(CNN)在捕捉长程空间关系方面的局限性以及视觉Transformer(ViT)由于连续下采样而在定位信息方面的不足。研究问题聚焦于通过结合这两种方法提高PC反应预测的准确性。

方法

我们提出了一种3D多分支CNN Transformer(CNNFormer)模型,将3D CNN和3D ViT整合在一起。模型的每个分支利用3D CNN将体积图像编码为高级特征表示,保留详细的定位信息,而3D ViT提取全局显著特征。该框架在一个由39名个体组成的患者队列中进行评估,根据PSA生物标志物状态进行分层。

结果

我们的框架在区分激素疗法的反应者和无反应者方面表现出色,准确率为97.50%,敏感性为100%,特异性为95.83%。尽管队列规模较小,但这些结果证明了CNNFormer模型的有效性。

结论

研究结果强调了该框架在加强个性化PC治疗计划和监测方面的潜力。通过结合CNN和ViT的优势,所提出的方法为PC对激素疗法的反应提供了强大、准确的预测,对改善临床决策具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6123/11668032/80f95a432433/12938_2024_1325_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验