Suppr超能文献

通过先进的深度学习技术提高 COVID-19 患者肺栓塞检测能力。

Enhancing Pulmonary Embolism Detection in COVID-19 Patients Through Advanced Deep Learning Techniques.

机构信息

School of Science and Technology, Hellenic Open University, Patras, Greece.

Department of Quality Control, Research and Continuing Education, Sismanogleio General Hospital, 15126 Marousi, Greece.

出版信息

Stud Health Technol Inform. 2024 Aug 22;316:1184-1188. doi: 10.3233/SHTI240622.

Abstract

The intersection of COVID-19 and pulmonary embolism (PE) has posed unprecedented challenges in medical diagnostics. The critical nature of PE and its increased incidence during the pandemic underline the need for improved detection methods. This study evaluates the effectiveness of advanced deep learning techniques in enhancing PE detection in post-COVID-19 patients through Computed Tomography Pulmonary Angiography (CTPA) scans. Using a dataset of 746 anonymized CTPA images from 25 patients, we fine-tuned the state-of-the-art Ultralytics YOLOv8 object detection model, which was trained on 676 images with 1,517 annotated bounding boxes and validated on 70 images with 108 bounding boxes. After 200 epochs of training, which lasted approximately 1.021 hours, the YOLOv8 model demonstrated significant diagnostic proficiency, achieving a mean Average Precision (mAP) of 0.683 at an IoU threshold of 0.50 and a mAP of 0.246 at the IoU range of 0.50:0.95 in the validation dataset. Notably, the model reached a maximum precision of 0.85949 and a maximum recall of 0.81481, though these metrics were observed in separate epochs. These findings emphasize the model's potential for high diagnostic accuracy and offer a promising direction for deploying AI tools in clinical settings, significantly contributing to healthcare innovation and patient care post-pandemic.

摘要

COVID-19 和肺栓塞 (PE) 的交叉对医学诊断提出了前所未有的挑战。PE 的严重性及其在大流行期间的发病率增加,突显了需要改进的检测方法。本研究评估了先进的深度学习技术在通过计算机断层扫描肺动脉造影 (CTPA) 扫描增强 COVID-19 后患者中 PE 检测的有效性。使用来自 25 名患者的 746 张匿名 CTPA 图像数据集,我们对最先进的 Ultralytics YOLOv8 目标检测模型进行了微调,该模型在 676 张图像上进行了训练,有 1517 个标注边界框,并在 70 张图像上进行了验证,有 108 个边界框。在大约 1.021 小时的 200 个训练周期后,YOLOv8 模型表现出了显著的诊断能力,在验证数据集中,IoU 阈值为 0.50 时的平均精度 (mAP) 为 0.683,IoU 范围为 0.50:0.95 时的 mAP 为 0.246。值得注意的是,该模型达到了最大精度 0.85949 和最大召回率 0.81481,尽管这些指标是在单独的时期观察到的。这些发现强调了该模型具有高诊断准确性的潜力,并为在临床环境中部署人工智能工具提供了一个有前途的方向,这对大流行后的医疗保健创新和患者护理有重大贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验