Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 4, Pieve Emanuele MI 20072, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy.
Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 4, Pieve Emanuele MI 20072, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy.
Eur J Radiol. 2024 Aug;177:111592. doi: 10.1016/j.ejrad.2024.111592. Epub 2024 Jun 25.
CT pulmonary angiography is the gold standard for diagnosing pulmonary embolism, and DL algorithms are being developed to manage the increase in demand. The nnU-Net is a new auto-adaptive DL framework that minimizes manual tuning, making it easier to develop effective algorithms for medical imaging even without specific expertise. This study assesses the performance of a locally developed nnU-Net algorithm on the RSPECT dataset for PE detection, clot volume measurement, and correlation with right ventricle overload.
MATERIALS & METHODS: User input was limited to segmentation using 3DSlicer. We worked with the RSPECT dataset and trained an algorithm from 205 PE and 340 negatives. The test dataset comprised 6573 exams. Performance was tested against PE characteristics, such as central, non-central, and RV overload. Blood clot volume (BCV) was extracted from each exam. We employed ROC curves and logistic regression for statistical validation.
Negative studies had a median BCV of 1 μL, which increased to 345 μL in PE-positive cases and 7,378 μL in central PEs. Statistical analysis confirmed a significant BCV correlation with PE presence, central PE, and increased RV/LV ratio (p < 0.0001). The model's AUC for PE detection was 0.865, with an 83 % accuracy at a 55 μL threshold. Central PE detection AUC was 0.937 with 91 % accuracy at 850 μL. The RV overload AUC stood at 0.848 with 79 % accuracy.
The nnU-Net algorithm demonstrated accurate PE detection, particularly for central PE. BCV is an accurate metric for automated severity stratification and case prioritization.
The nnU-Net framework can be utilized to create a dependable DL for detecting PE. It offers a user-friendly approach to those lacking expertise in AI and rapidly extracts the Blood Clot Volume, a metric that can evaluate the PE's severity.
CT 肺动脉造影是诊断肺栓塞的金标准,目前正在开发 DL 算法以应对需求的增加。nnU-Net 是一种新的自适应 DL 框架,它最大限度地减少了手动调整,即使没有特定的专业知识,也更容易为医学成像开发有效的算法。本研究评估了一种本地开发的 nnU-Net 算法在 RSPECT 数据集上用于检测 PE、测量血栓体积以及与右心室超负荷相关的性能。
用户输入仅限于使用 3DSlicer 进行分割。我们使用 RSPECT 数据集,对 205 例 PE 和 340 例阴性病例进行算法训练。测试数据集包含 6573 项检查。性能测试针对 PE 的特征,如中央型、非中央型和 RV 超负荷。从每次检查中提取血栓体积(BCV)。我们使用 ROC 曲线和逻辑回归进行统计验证。
阴性研究的中位 BCV 为 1 μL,在 PE 阳性病例中增加到 345 μL,在中央型 PE 中增加到 7378 μL。统计分析证实 BCV 与 PE 存在、中央型 PE 和 RV/LV 比值增加有显著相关性(p<0.0001)。该模型对 PE 检测的 AUC 为 0.865,在 55 μL 阈值时准确率为 83%。中央型 PE 的 AUC 为 0.937,准确率为 91%,在 850 μL 时。RV 超负荷的 AUC 为 0.848,准确率为 79%。
nnU-Net 算法对 PE 的检测准确,特别是对中央型 PE。BCV 是一种自动严重程度分层和病例优先级划分的准确指标。
nnU-Net 框架可用于创建可靠的 DL 以检测 PE。它为缺乏 AI 专业知识的用户提供了一种简便的方法,并快速提取血栓体积,这一指标可评估 PE 的严重程度。