Suppr超能文献

你是异常值吗?识别针对健康数据集的隐私攻击目标。

Are You the Outlier? Identifying Targets for Privacy Attacks on Health Datasets.

作者信息

Halilovic Mehmed, Meurers Thierry, Otte Karen, Prasser Fabian

机构信息

Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Health Data Science, Charitéplatz 1, 10117 Berlin, Germany.

出版信息

Stud Health Technol Inform. 2024 Aug 22;316:1224-1225. doi: 10.3233/SHTI240631.

Abstract

The identification of vulnerable records (targets) is an important step for many privacy attacks on protected health data. We implemented and evaluated three outlier metrics for detecting potential targets. Next, we assessed differences and similarities between the top-k targets suggested by the different methods and studied how susceptible those targets are to membership inference attacks on synthetic data. Our results suggest that there is no one-size-fits-all approach and that target selection methods should be chosen based on the type of attack that is to be performed.

摘要

识别易受攻击的记录(目标)是对受保护健康数据进行许多隐私攻击的重要一步。我们实施并评估了三种用于检测潜在目标的异常值度量。接下来,我们评估了不同方法建议的前k个目标之间的差异和相似性,并研究了这些目标对合成数据成员推理攻击(的易感性)。我们的结果表明,没有一种适用于所有情况的方法,并且应根据要执行的攻击类型选择目标选择方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验