Berlin Institute of Health at Charité, Germany.
Stud Health Technol Inform. 2024 Aug 22;316:596-600. doi: 10.3233/SHTI240485.
This paper explores the critical role of Interoperability (IOP) in the integration of Artificial Intelligence (AI) for clinical applications. As AI gains prominence in medical analytics, its application in clinical practice faces challenges due to the lack of standardization in the medical sector. IOP, the ability of systems to exchange information seamlessly, emerges as a fundamental solution. Our paper discusses the indispensable nature of IOP throughout the Data Life Cycle, demonstrating how interoperable data can facilitate AI applications. The benefits of IOP encompass streamlined data entry for healthcare professionals, efficient data processing, enabling the sharing of data and algorithms for replication, and potentially increasing the significance of results obtained by medical data analytics via AI. Despite the challenges of IOP, its successful implementation promises substantial benefits for integrating AI into clinical practice, which could ultimately enhance patient outcomes and healthcare quality.
本文探讨了互操作性(IOP)在人工智能(AI)临床应用集成中的关键作用。随着 AI 在医疗分析中的重要性日益凸显,由于医疗领域缺乏标准化,其在临床实践中的应用面临挑战。IOP 即系统无缝交换信息的能力,是一个基本的解决方案。本文讨论了 IOP 在整个数据生命周期中的不可或缺性,展示了互操作数据如何促进 AI 应用。IOP 的好处包括简化医疗专业人员的数据录入、高效的数据处理、支持数据和算法的共享以进行复制,以及通过 AI 提高医疗数据分析获得的结果的重要性。尽管存在 IOP 的挑战,但成功实施 IOP 将为将 AI 整合到临床实践中带来巨大益处,这最终将提高患者的治疗效果和医疗质量。