Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Stud Health Technol Inform. 2024 Aug 22;316:796-800. doi: 10.3233/SHTI240531.
The significance of intracellular recording in neurophysiology is emphasized in this article, with considering the functions of neurons, particularly the role of first spike latency in response to external stimuli. The study employs advanced machine learning techniques to predict first spike latency from whole cell patch recording data. Experiments were conducted on Control (Salin) and Experiment (Harmaline) groups, generating a dataset for developing predictive models. Because the dataset has a limited number of samples, we utilized models that are effective with small datasets. Among different groups of regression models (linear, ensemble, and tree models), the ensemble models, specifically the LGB method, can achieve better performance. The results demonstrate accurate prediction of first spike latency, with an average mean squared error of 0.0002 and mean absolute error of 0.01 in 10-fold cross-validation. The research suggests the potential of machine learning in forecasting the first spike latency, allowing reliable estimation without the need for extensive animal testing. This intelligent predictive system facilitates efficient analysis of first spike latency changes in both healthy and unhealthy brain cells, streamlining experimentation and providing more detailed insights into the captured signals.
本文强调了细胞内记录在神经生理学中的重要性,考虑到神经元的功能,特别是第一个尖峰潜伏期在对外界刺激的反应中的作用。该研究采用先进的机器学习技术,从全细胞膜片钳记录数据中预测第一个尖峰潜伏期。实验在对照组(生理盐水)和实验组(哈马灵)中进行,生成了一个用于开发预测模型的数据集。由于数据集样本数量有限,我们使用了适用于小数据集的模型。在不同的回归模型组(线性、集成和树模型)中,集成模型,特别是 LGB 方法,可以获得更好的性能。结果表明,第一个尖峰潜伏期的预测非常准确,在 10 倍交叉验证中平均均方误差为 0.0002,平均绝对误差为 0.01。该研究表明,机器学习在预测第一个尖峰潜伏期方面具有潜力,可以在不需要进行广泛动物测试的情况下进行可靠的估计。这个智能预测系统有助于对健康和不健康脑细胞的第一个尖峰潜伏期变化进行高效分析,简化实验并提供更详细的捕获信号见解。