Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
PLoS Comput Biol. 2024 Aug 23;20(8):e1012361. doi: 10.1371/journal.pcbi.1012361. eCollection 2024 Aug.
Segmentation is required to quantify cellular structures in microscopic images. This typically requires their fluorescent labeling. Convolutional neural networks (CNNs) can detect these structures also in only transmitted light images. This eliminates the need for transgenic or dye fluorescent labeling, frees up imaging channels, reduces phototoxicity and speeds up imaging. However, this approach currently requires optimized experimental conditions and computational specialists. Here, we introduce "aiSEGcell" a user-friendly CNN-based software to segment nuclei and cells in bright field images. We extensively evaluated it for nucleus segmentation in different primary cell types in 2D cultures from different imaging modalities in hand-curated published and novel imaging data sets. We provide this curated ground-truth data with 1.1 million nuclei in 20,000 images. aiSEGcell accurately segments nuclei from even challenging bright field images, very similar to manual segmentation. It retains biologically relevant information, e.g. for demanding quantification of noisy biosensors reporting signaling pathway activity dynamics. aiSEGcell is readily adaptable to new use cases with only 32 images required for retraining. aiSEGcell is accessible through both a command line, and a napari graphical user interface. It is agnostic to computational environments and does not require user expert coding experience.
分割是量化显微镜图像中细胞结构所必需的。这通常需要对其进行荧光标记。卷积神经网络 (CNN) 也可以仅在透射光图像中检测到这些结构。这消除了对转基因或染料荧光标记的需求,释放了成像通道,降低了光毒性并加快了成像速度。然而,这种方法目前需要优化的实验条件和计算专家。在这里,我们介绍了“aiSEGcell”,这是一个基于卷积神经网络的用户友好型软件,用于分割明场图像中的细胞核和细胞。我们在经过精心编辑的已发表和新颖的成像数据集以及来自不同成像模式的二维培养的不同原代细胞类型中,对其进行了细胞核分割的广泛评估。我们提供了带有 110 万个细胞核的 20000 张图像的经过精心编辑的真实数据。aiSEGcell 可以准确地分割明场图像中的细胞核,与手动分割非常相似。它保留了生物学上相关的信息,例如用于对报告信号通路活性动力学的嘈杂生物传感器进行要求苛刻的定量分析。aiSEGcell 可以很容易地适应新的用例,仅需 32 张图像即可重新训练。aiSEGcell 可以通过命令行和 napari 图形用户界面访问。它与计算环境无关,不需要用户具有编码经验。