Institute of Cell Biology, University of Bern, Bern, Switzerland.
Methods Mol Biol. 2022;2488:183-206. doi: 10.1007/978-1-0716-2277-3_13.
Fluorescent live cell time-lapse microscopy is steadily contributing to our better understanding of the relationship between cell signaling and fate. However, large volumes of time-series data generated in these experiments and the heterogenous nature of signaling responses due to cell-cell variability hinder the exploration of such datasets. The population averages insufficiently describe the dynamics, yet finding prototypic dynamic patterns that relate to different cell fates is difficult when mining thousands of time-series. Here we demonstrate a protocol where we identify such dynamic phenotypes in a population of PC-12 cells that respond to a range of sustained growth factor perturbations. We use Time-Course Inspector, a free R/Shiny web application to explore and cluster single-cell time-series.
荧光活细胞延时显微镜技术为我们更好地理解细胞信号转导与命运之间的关系提供了帮助。然而,这些实验中产生的大量时间序列数据,以及由于细胞间变异性导致的信号转导反应的异质性,阻碍了对这些数据集的探索。群体平均值不能充分描述动力学,而当挖掘数千个时间序列时,要找到与不同细胞命运相关的典型动态模式则很困难。在这里,我们展示了一种在对一系列持续的生长因子刺激做出反应的 PC-12 细胞群体中识别这种动态表型的方案。我们使用 Time-Course Inspector,这是一个免费的 R/Shiny 网络应用程序,用于探索和聚类单细胞时间序列。