Suppr超能文献

在 RNA 参与肽合成之前,其氨酰化作用可能具有一定的功能。

A potential role for RNA aminoacylation prior to its role in peptide synthesis.

机构信息

HHMI, Department of Chemistry, The University of Chicago, Chicago, IL 60637.

Department of Genetics, Harvard Medical School, Boston, MA 02115.

出版信息

Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2410206121. doi: 10.1073/pnas.2410206121. Epub 2024 Aug 23.

Abstract

Coded ribosomal peptide synthesis could not have evolved unless its sequence and amino acid-specific aminoacylated tRNA substrates already existed. We therefore wondered whether aminoacylated RNAs might have served some primordial function prior to their role in protein synthesis. Here, we show that specific RNA sequences can be nonenzymatically aminoacylated and ligated to produce amino acid-bridged stem-loop RNAs. We used deep sequencing to identify RNAs that undergo highly efficient glycine aminoacylation followed by loop-closing ligation. The crystal structure of one such glycine-bridged RNA hairpin reveals a compact internally stabilized structure with the same eponymous T-loop architecture that is found in many noncoding RNAs, including the modern tRNA. We demonstrate that the T-loop-assisted amino acid bridging of RNA oligonucleotides enables the rapid template-free assembly of a chimeric version of an aminoacyl-RNA synthetase ribozyme. We suggest that the primordial assembly of amino acid-bridged chimeric ribozymes provides a direct and facile route for the covalent incorporation of amino acids into RNA. A greater functionality of covalently incorporated amino acids could contribute to enhanced ribozyme catalysis, providing a driving force for the evolution of sequence and amino acid-specific aminoacyl-RNA synthetase ribozymes in the RNA World. The synthesis of specifically aminoacylated RNAs, an unlikely prospect for nonenzymatic reactions but a likely one for ribozymes, could have set the stage for the subsequent evolution of coded protein synthesis.

摘要

编码核糖体肽合成不可能进化,除非其序列和氨基酸特异性氨酰化 tRNA 底物已经存在。因此,我们想知道氨酰化 RNA 是否在其在蛋白质合成中的作用之前就具有某种原始功能。在这里,我们展示了特定的 RNA 序列可以通过非酶促氨酰化和连接来产生氨基酸桥接的茎环 RNA。我们使用深度测序来鉴定经历高效甘氨酸氨酰化然后进行环封闭连接的 RNA。这种甘氨酸桥接 RNA 发夹的晶体结构揭示了一种具有相同命名 T 环结构的紧凑内部稳定结构,这种结构存在于许多非编码 RNA 中,包括现代 tRNA。我们证明,RNA 寡核苷酸的 T 环辅助氨基酸桥接能够快速无模板组装氨酰基 RNA 合成酶核酶的嵌合版本。我们认为,氨基酸桥接嵌合核酶的原始组装为共价将氨基酸掺入 RNA 提供了直接而简单的途径。共价掺入氨基酸的更大功能可能有助于增强核酶催化,为 RNA 世界中序列和氨基酸特异性氨酰基 RNA 合成酶核酶的进化提供动力。特异性氨酰化 RNA 的合成,对于非酶促反应来说不太可能,但对于核酶来说很可能,它可能为随后编码蛋白质合成的进化奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e28c/11363276/80887bb9a23d/pnas.2410206121fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验