Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago 8331150, Chile.
DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae162.
Microbes in marine ecosystems have evolved their gene content to thrive successfully in the cold. Although this process has been reasonably well studied in bacteria and selected eukaryotes, less is known about the impact of cold environments on the genomes of viruses that infect eukaryotes. Here, we analyzed cold adaptations in giant viruses (Nucleocytoviricota and Mirusviricota) from austral marine environments and compared them with their Arctic and temperate counterparts. We recovered giant virus metagenome-assembled genomes (98 Nucleocytoviricota and 12 Mirusviricota MAGs) from 61 newly sequenced metagenomes and metaviromes from sub-Antarctic Patagonian fjords and Antarctic seawater samples. When analyzing our data set alongside Antarctic and Arctic giant viruses MAGs already deposited in the Global Ocean Eukaryotic Viral database, we found that Antarctic and Arctic giant viruses predominantly inhabit sub-10°C environments, featuring a high proportion of unique phylotypes in each ecosystem. In contrast, giant viruses in Patagonian fjords were subject to broader temperature ranges and showed a lower degree of endemicity. However, despite differences in their distribution, giant viruses inhabiting low-temperature marine ecosystems evolved genomic cold-adaptation strategies that led to changes in genetic functions and amino acid frequencies that ultimately affect both gene content and protein structure. Such changes seem to be absent in their mesophilic counterparts. The uniqueness of these cold-adapted marine giant viruses may now be threatened by climate change, leading to a potential reduction in their biodiversity.
海洋生态系统中的微生物已经进化出了适应寒冷环境的基因内容,以在低温环境中成功生存。虽然这个过程在细菌和选定的真核生物中已经得到了相当好的研究,但对于感染真核生物的病毒的基因组在冷环境中的影响知之甚少。在这里,我们分析了来自澳大利亚海洋环境的巨型病毒(Nucleocytoviricota 和 Mirusviricota)的冷适应特性,并将其与它们的北极和温带对应物进行了比较。我们从南巴塔哥尼亚峡湾和南极海水样本的 61 个新测序宏基因组和宏病毒组中回收了 98 个 Nucleocytoviricota 和 12 个 Mirusviricota 宏基因组组装基因组(MAGs)。在分析我们的数据集时,我们将其与已经在全球海洋真核病毒数据库中存储的南极和北极巨型病毒 MAGs 进行了比较,发现南极和北极巨型病毒主要栖息在 10°C 以下的环境中,每个生态系统中都有很高比例的独特类群。相比之下,巴塔哥尼亚峡湾的巨型病毒受到更广泛的温度范围的影响,其特有性程度较低。然而,尽管它们的分布存在差异,但栖息在低温海洋生态系统中的巨型病毒进化出了基因组冷适应策略,导致遗传功能和氨基酸频率发生变化,最终影响基因内容和蛋白质结构。这些变化在它们的嗜温对应物中似乎不存在。这些适应寒冷的海洋巨型病毒的独特性现在可能受到气候变化的威胁,导致它们的生物多样性潜在减少。