Suppr超能文献

基于人工神经网络(ANN)-响应面法优化从(施魏因)帕特中提取总甾体的工艺及提取物成分鉴定

Optimization of the extraction process of total steroids from (Schwein.) Pat. by artificial neural network (ANN)-response surface methodology and identification of extract constituents.

作者信息

Gao Xusheng, Ma Junxia, Li Fengfu, Zhou Qian, Gao Dan

机构信息

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.

College of Traditional Chinese Medicine and Key Laboratory of Edible Fungi Resources and Utilization, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, China.

出版信息

Prep Biochem Biotechnol. 2025 Feb;55(2):230-243. doi: 10.1080/10826068.2024.2394449. Epub 2024 Aug 23.

Abstract

(Schwein.) Pat has pharmacological effects such as tonifying the spleen, dispelling dampness, and strengthening the stomach, in which sterol is one of the main compounds of , but there has not been thought you to its extraction and detailed identification of its composition, in the present study, we used artificial neural network (ANN) and response surface methodology (RSM) to optimize the conditions of ultrasonic-assisted extraction, and the parameters of the independent and interaction effects were evaluated. Ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS/MS) was used to identify the major components in the purified extract. The results showed that the optimal extraction process conditions were: ultrasonic time 96 min, ultrasonic power 140 W, liquid to material ratio 1:25 g/ml, and ultrasonic temperature 30.7 °C. The compliance rates of the predicted and experimental values for the artificial neural network model and the response surface model were 98.3% and 96.12%, respectively, indicating that both models have the potential to be used for optimizing the extraction process of s in industry. A total of 120 compounds and 30 major steroids were identified by comparison with the reference compounds. Among the major steroidal components are these findings will contribute to the isolation and utilization of active ingredients in

摘要

(猪苓)猪苓具有补脾、祛湿、健胃等药理作用,其中甾醇是其主要成分之一,但尚未有人对其进行提取及详细的成分鉴定。在本研究中,我们使用人工神经网络(ANN)和响应面法(RSM)优化超声辅助提取条件,并评估独立效应和交互效应的参数。采用超高效液相色谱-四极杆-飞行时间质谱(UPLC-Q-TOF-MS/MS)鉴定纯化提取物中的主要成分。结果表明,最佳提取工艺条件为:超声时间96分钟、超声功率140瓦、液料比1:25克/毫升、超声温度30.7℃。人工神经网络模型和响应面模型预测值与实验值的符合率分别为98.3%和96.12%,表明这两种模型均有在工业上用于优化猪苓提取工艺的潜力。通过与参考化合物比较,共鉴定出120种化合物和30种主要甾体。在主要甾体成分中,这些发现将有助于活性成分的分离和利用 。

你提供的原文中存在一些表述不清晰和拼写错误的地方,可能会影响理解的准确性,以上译文是尽量按照正确意思翻译的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验