Suppr超能文献

利用 CRISPR-Cas9 在体解析小鼠酪氨酸分解代谢途径,鉴定影响遗传性酪氨酸血症 1 型的修饰基因。

In vivo dissection of the mouse tyrosine catabolic pathway with CRISPR-Cas9 identifies modifier genes affecting hereditary tyrosinemia type 1.

机构信息

Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada.

Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada.

出版信息

Genetics. 2024 Oct 7;228(2). doi: 10.1093/genetics/iyae139.

Abstract

Hereditary tyrosinemia type 1 is an autosomal recessive disorder caused by mutations (pathogenic variants) in fumarylacetoacetate hydrolase, an enzyme involved in tyrosine degradation. Its loss results in the accumulation of toxic metabolites that mainly affect the liver and kidneys and can lead to severe liver disease and liver cancer. Tyrosinemia type 1 has a global prevalence of approximately 1 in 100,000 births but can reach up to 1 in 1,500 births in some regions of Québec, Canada. Mutating functionally related "modifier' genes (i.e. genes that, when mutated, affect the phenotypic impacts of mutations in other genes) is an emerging strategy for treating human genetic diseases. In vivo somatic genome editing in animal models of these diseases is a powerful means to identify modifier genes and fuel treatment development. In this study, we demonstrate that mutating additional enzymes in the tyrosine catabolic pathway through liver-specific genome editing can relieve or worsen the phenotypic severity of a murine model of tyrosinemia type 1. Neonatal gene delivery using recombinant adeno-associated viral vectors expressing Staphylococcus aureus Cas9 under the control of a liver-specific promoter led to efficient gene disruption and metabolic rewiring of the pathway, with systemic effects that were distinct from the phenotypes observed in whole-body knockout models. Our work illustrates the value of using in vivo genome editing in model organisms to study the direct effects of combining pathological mutations with modifier gene mutations in isogenic settings.

摘要

遗传性酪氨酸血症 1 型是一种常染色体隐性遗传病,由酪氨酸降解过程中所涉及的酶——延胡索酰乙酰乙酸水解酶的突变(致病性变异)引起。该酶的缺失导致毒性代谢物的积累,主要影响肝脏和肾脏,并可能导致严重的肝病和肝癌。全球范围内,遗传性酪氨酸血症 1 型的发病率约为每 10 万出生儿中有 1 例,但在加拿大魁北克某些地区,其发病率可高达每 1500 例出生儿中有 1 例。突变功能相关的“修饰基因”(即当突变时,会影响其他基因突变表型影响的基因)是治疗人类遗传疾病的新兴策略。在这些疾病的动物模型中进行体内体细胞基因组编辑是鉴定修饰基因和推动治疗开发的有力手段。在这项研究中,我们证明了通过肝脏特异性基因组编辑突变酪氨酸代谢途径中的其他酶,可以缓解或加重遗传性酪氨酸血症 1 型的小鼠模型的表型严重程度。使用重组腺相关病毒载体进行新生鼠基因传递,该载体在肝脏特异性启动子的控制下表达金黄色葡萄球菌 Cas9,可实现高效的基因敲除和途径的代谢重编程,其全身效应与在全身性基因敲除模型中观察到的表型不同。我们的工作说明了在模式生物中使用体内基因组编辑来研究在同基因背景下将病理性突变与修饰基因突变相结合的直接影响的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d342/11457941/e2e2129bf702/iyae139f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验