Nowakowski Leszek, Hudy Camillo, Zasada Filip, Gryboś Joanna, Piskorz Witold, Wach Anna, Kayser Yves, Szlachetko Jakub, Sojka Zbigniew
Faculty of Chemistry Jagiellonian University, ul. Gronostajowa 2, Krakow 30-387, Poland.
Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, Krakow 30-348, Poland.
J Am Chem Soc. 2024 Sep 4;146(35):24450-24466. doi: 10.1021/jacs.4c06587. Epub 2024 Aug 23.
The intimate mechanism of NO decomposition on bare and redox-tuned CoO nanocubes (achieved by single (Li or K) and double (Li and K) doping) was elucidated. The catalysts synthesized by the hydrothermal method were characterized by X-ray electron absorption fine structure measurements, X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and Kelvin Probe techniques. TPSR and steady-state isothermal catalytic tests reveal that the NO turnover frequencies are critically sensitive to the work function of the catalysts, adjusted purposely by doping. For the catalysts obtained by one-pot hydrothermal synthesis, lithiation of the CoO nanocubes leads to the formation of {Li', Co·} species, decreasing steadily the work function and the activity, while for the catalysts prepared by postsynthesis impregnation, formation of {Li', Co' Co··} species leads to a volcano-type dependence of the catalytic activity and the work function in parallel. The beneficial effect of potassium was discussed in terms of mitigation of surface potential buildup due to the accumulation of ionosorbed oxygen intermediates (surface electrostatics), which hinders the interfacial electron transfer. Analysis of the catalytic activity response to the redox tuning of CoO, substantiated by DFT calculations, allowed for a straightforward conceptualization of the redox nature of the NO decomposition in terms of the lineup of frontier orbitals of the NO/NO and O/O reactants with the surface DOS structure and the resultant molecular orbital interactions. The positions of the virtual bonding 3π(NO)-α-3d and the occupied 2π(O)-α-3d states relative to the Fermi energy level play a crucial role in the regulation of the forward and backward interfacial electron transfer events, which drive the redox process.
阐明了NO在裸CoO纳米立方体以及经过氧化还原调节的CoO纳米立方体(通过单掺杂(Li或K)和双掺杂(Li和K)实现)上分解的内在机制。采用水热法合成的催化剂通过X射线电子吸收精细结构测量、X射线衍射、拉曼光谱、扫描电子显微镜、透射电子显微镜和开尔文探针技术进行了表征。程序升温表面反应(TPSR)和稳态等温催化测试表明,NO的转化频率对催化剂的功函数极为敏感,功函数可通过掺杂特意调节。对于通过一锅水热合成获得的催化剂,CoO纳米立方体的锂化导致{Li',Co·}物种的形成,功函数和活性稳步降低,而对于通过合成后浸渍制备的催化剂,{Li',Co' Co··}物种的形成导致催化活性和功函数呈火山型平行依赖关系。从减轻由于离子吸附氧中间体积累(表面静电)导致的表面电位积累的角度讨论了钾的有益作用,这种积累会阻碍界面电子转移。通过密度泛函理论(DFT)计算证实了对CoO氧化还原调节的催化活性响应分析,这使得能够根据NO/NO和O/O反应物的前沿轨道与表面态密度(DOS)结构的排列以及由此产生的分子轨道相互作用,直接从概念上理解NO分解的氧化还原本质。虚拟键合3π(NO)-α-3d和占据的2π(O)-α-3d态相对于费米能级的位置在调节向前和向后的界面电子转移事件中起着关键作用,这些事件驱动着氧化还原过程。