Li Dazhi, Gao Kesheng, Miao Zeqing, Miao Yukun, Wang Xiaoguang, Wang Danchen, Li Zeyang, Han Ying, Zheng Qiuju, Li Zhenjiang, Sun Changlong
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, PR China.
Yantai Guobang Chemical Machine Technology Co, Ltd, Yantai 264004, Shandong, PR China.
J Colloid Interface Sci. 2025 Jan;677(Pt B):1034-1044. doi: 10.1016/j.jcis.2024.08.138. Epub 2024 Aug 20.
The interfacial effect is important for the tungsten trioxide (WO)-based anode to achieve superior lithium-ion storage performance. Herein, the interfacial effect was constructed by in-situ surface direct nitridation reaction at 600 ℃ for 30 min of the as-synthesis WO nanoparticles (WO/WN). X-ray photoelectron spectroscopy (XPS) analysis confirms evident chemical interaction between WO and WN via the interfacial covalent bond (WON). This WO/WN anode shows a distinct interfacial effect for an efficient interatomic electron migration. Electrochemical kinetic analysis shows enhanced pseudocapacitance contribution. The galvanostatic intermittent titration technique (GITT) result demonstrates improved charge transfer kinetics. Ex-situ X-ray diffraction (XRD) analysis reveals the reversible oxidation and reduction reaction of the WO/WN anode. The density functional theory (DFT) result shows that the evident interfacial bonding effect can enhance the electrochemical reaction kinetics of the WO/WN anode. The discharge capacity can reach up to 546.9 mA h g at 0.1 A g after 200 cycles. After 2000 cycles, the capacity retention is approximately 85.97 % at 1.0 A g. In addition, the WO/WN full cell (LiFePO/C//WO/WN) demonstrates excellent rate capability and capacity retention ratio. This in-situ surface nitridation strategy is an effective solution for designing an oxide-based anode with good electrochemical performance and beyond.
界面效应对于基于三氧化钨(WO)的阳极实现优异的锂离子存储性能至关重要。在此,通过对合成的WO纳米颗粒(WO/WN)在600℃下原位表面直接氮化反应30分钟构建了界面效应。X射线光电子能谱(XPS)分析证实了WO和WN之间通过界面共价键(WON)存在明显的化学相互作用。这种WO/WN阳极表现出明显的界面效应,有利于高效的原子间电子迁移。电化学动力学分析表明赝电容贡献增强。恒电流间歇滴定技术(GITT)结果表明电荷转移动力学得到改善。非原位X射线衍射(XRD)分析揭示了WO/WN阳极的可逆氧化还原反应。密度泛函理论(DFT)结果表明,明显的界面键合效应可以增强WO/WN阳极的电化学反应动力学。在0.1 A g下循环200次后,放电容量可达546.9 mA h g。在1.0 A g下循环2000次后,容量保持率约为85.97%。此外,WO/WN全电池(LiFePO/C//WO/WN)表现出优异的倍率性能和容量保持率。这种原位表面氮化策略是设计具有良好电化学性能及其他性能的氧化物基阳极的有效解决方案。