Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
IQCC & Dept. Quıímica, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
J Inorg Biochem. 2024 Nov;260:112698. doi: 10.1016/j.jinorgbio.2024.112698. Epub 2024 Aug 15.
Redox non-innocent ligands hold the potential to expand the redox chemistry and activity of transition metal catalysts. The impact of the additional redox chemistry of phenol ligands in oxidation catalysis is explored here in the complex μ-oxido-diiron(III) polypyridyl (1) (L)Fe(III)(μ-O)Fe(III)(L) (where HL is 2-(((di(pyridin-2-yl)methyl) (pyridin-2-ylmethyl) amino)methyl)phenol) and its tert-butyl substituted analog 2, in which each of the Fe(III) centers is coordinated to a phenolato moiety of the ligand. Complex 1 was shown earlier to catalyse the oxidation of benzyl alcohols to aldehydes with HO. In particular acid was found to accelerate the reactions by removal of a lag period before catalysis initiated. Here, we use reaction monitoring with resonance Raman, UV/vis absorption and EPR spectroscopy to show that under catalytic conditions, i.e. with excess HO, rapid (< 5 s) loss of the phenolato moiety occurs, resulting in the formation of an N4 ligated Fe(III) complex. This N4 coordinated complex forms a Fe(III)-OOH species, which is responsible for alcohol oxidation and over time a relatively stable oxido-bridged dinuclear Fe(III) complex forms as a resting state in the catalytic system. The main role of acid in the catalysis is shown to be to facilitate the initial coordination of HO by driving the formation of mononuclear complexes from 1 and 2. The data show that although the phenolato moiety imparts interesting redox properties on complex 1, it does not contribute directly to the oxidation catalysis observed with HO.
氧化还原非惰性配体有可能扩展过渡金属催化剂的氧化还原化学和活性。在此,我们探索了酚配体的额外氧化还原化学在氧化催化中的影响,研究了μ-氧代二铁(III)多吡啶配合物(1)(L)Fe(III)(μ-O)Fe(III)(L)(其中 HL 是 2-(((二(吡啶-2-基)甲基)(吡啶-2-基甲基)氨基)甲基)苯酚)及其叔丁基取代类似物 2,其中每个 Fe(III)中心都与配体的酚氧基部分配位。先前已经表明,配合物 1 可以催化苯甲醇氧化为醛,使用 HO。特别发现酸通过在催化开始前去除滞后期来加速反应。在这里,我们使用共振拉曼、紫外/可见吸收和 EPR 光谱进行反应监测,表明在催化条件下,即在有过量 HO 的情况下,酚氧基部分会迅速(<5 s)失去,导致形成 N4 配位的 Fe(III)配合物。这种 N4 配位的配合物形成 Fe(III)-OOH 物种,负责醇氧化,随着时间的推移,在催化体系中形成相对稳定的桥连双核 Fe(III)配合物作为休眠状态。酸在催化中的主要作用是通过促使 1 和 2 形成单核配合物来促进 HO 的初始配位。数据表明,尽管酚氧基部分赋予配合物 1 有趣的氧化还原性质,但它不能直接贡献于观察到的 HO 氧化催化。