Duijnstee Daniël R, Di Berto Mancini Marika, de Roo C Maurits, Unjaroen Duenpen, Tromp Moniek, Hage Ronald, Browne Wesley R, Swart Marcel
Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 3, 9747AG, Groningen, The Netherlands.
Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 3, 9747AG, Groningen, The Netherlands.
Dalton Trans. 2025 Sep 15. doi: 10.1039/d5dt01477h.
Fe(V)O species can be generated by the heterolytic cleavage of the O-O bond of corresponding Fe(III)-OOH species. In haem complexes the redox non-innocence of the ligand facilitates such heterolytic cleavage, however non-haem iron complexes generally show homolytic cleavage to form an Fe(IV)O species and a hydroxyl radical. The hydroxyl radical formed is undesirable due to its non-selective reactivity. Here we show that the redox non-innocence of a phenolato ligand moiety in the complex [LFe(III)(μ-O)Fe(III)L], where L is 2-(((di(pyridin-2-yl)methyl)(pyridin-2-ylmethyl)amino)methyl)phenolate, facilitates heterolytic O-O bond cleavage, similar in manner to that observed with haem Fe(III)-OOH species, to yield a formal Fe(V)O intermediate. Although not observed directly, the intermediacy of an Fe(V)O species is manifested in the immediate appearance of a doubly oxidised bis-phenolato bridged complex observed by time resolved UV/vis absorption and resonance Raman spectroscopy. This complex is formed by C-C coupling at the position of the phenolato moiety of the ligand. The pathways to form the final complex various Fe(IV)O and Fe(V)O intermediates are investigated by DFT methods, which indicate that the impact of the phenolato moiety is due to its redox non-innocence primarily. The ability of the phenolato moiety to transfer charge and spin density induces a switch in the mechanism of O-O bond cleavage from homolytic to heterolytic manifested in the radical character at the -position needed for C-C bond formation and the high oxidation state of the first observed product.
Fe(V)O物种可通过相应Fe(III)-OOH物种的O-O键异裂产生。在血红素配合物中,配体的氧化还原非惰性促进了这种异裂,然而非血红素铁配合物通常表现出均裂以形成Fe(IV)O物种和一个羟基自由基。所形成的羟基自由基因其非选择性反应性而不受欢迎。在此我们表明,在配合物[LFe(III)(μ-O)Fe(III)L]中,酚盐配体部分的氧化还原非惰性促进了O-O键的异裂,其方式与血红素Fe(III)-OOH物种中观察到的类似,从而产生一个形式上的Fe(V)O中间体。尽管未直接观察到,但Fe(V)O物种的中间体状态通过时间分辨紫外/可见吸收光谱和共振拉曼光谱观察到的双氧化双酚盐桥联配合物的立即出现得以体现。该配合物是通过配体酚盐部分的位置处的C-C偶联形成的。通过密度泛函理论方法研究了形成最终配合物以及各种Fe(IV)O和Fe(V)O中间体的途径,结果表明酚盐部分的影响主要归因于其氧化还原非惰性。酚盐部分转移电荷和自旋密度的能力导致O-O键断裂机制从均裂转变为异裂,这体现在形成C-C键所需的位置处具有自由基特征以及第一个观察到的产物具有高氧化态。