Suppr超能文献

基于骨架引导的多尺度双坐标注意力聚合网络的视网膜血管分割。

Skeleton-guided multi-scale dual-coordinate attention aggregation network for retinal blood vessel segmentation.

机构信息

College of Computer Science, Shenyang Aerospace University, Shenyang, China.

Department of Ophthalmology, The 908th Hospital of Chinese People's Liberation Army Joint Logistic SupportForce, Nanchang, China.

出版信息

Comput Biol Med. 2024 Oct;181:109027. doi: 10.1016/j.compbiomed.2024.109027. Epub 2024 Aug 22.

Abstract

Deep learning plays a pivotal role in retinal blood vessel segmentation for medical diagnosis. Despite their significant efficacy, these techniques face two major challenges. Firstly, they often neglect the severe class imbalance in fundus images, where thin vessels in the foreground are proportionally minimal. Secondly, they are susceptible to poor image quality and blurred vessel edges, resulting in discontinuities or breaks in vascular structures. In response, this paper proposes the Skeleton-guided Multi-scale Dual-coordinate Attention Aggregation (SMDAA) network for retinal vessel segmentation. SMDAA comprises three innovative modules: Dual-coordinate Attention (DCA), Unbalanced Pixel Amplifier (UPA), and Vessel Skeleton Guidance (VSG). DCA, integrating Multi-scale Coordinate Feature Aggregation (MCFA) and Scale Coordinate Attention Decoding (SCAD), meticulously analyzes vessel structures across various scales, adept at capturing intricate details, thereby significantly enhancing segmentation accuracy. To address class imbalance, we introduce UPA, dynamically allocating more attention to misclassified pixels, ensuring precise extraction of thin and small blood vessels. Moreover, to preserve vessel structure continuity, we integrate vessel anatomy and develop the VSG module to connect fragmented vessel segments. Additionally, a Feature-level Contrast (FCL) loss is introduced to capture subtle nuances within the same category, enhancing the fidelity of retinal blood vessel segmentation. Extensive experiments on three public datasets (DRIVE, STARE, and CHASE_DB1) demonstrate superior performance in comparison to current methods. The code is available at https://github.com/wangwxr/SMDAA_NET.

摘要

深度学习在医学诊断中的视网膜血管分割中起着关键作用。尽管这些技术非常有效,但它们面临两个主要挑战。首先,它们经常忽略眼底图像中严重的类别不平衡,即前景中的细血管比例极小。其次,它们容易受到图像质量差和血管边缘模糊的影响,导致血管结构的不连续或中断。针对这些问题,本文提出了一种用于视网膜血管分割的骨架引导多尺度双坐标注意力聚合(SMDAA)网络。SMDAA 由三个创新模块组成:双坐标注意力(DCA)、不平衡像素放大器(UPA)和血管骨架引导(VSG)。DCA 集成了多尺度坐标特征聚合(MCFA)和尺度坐标注意力解码(SCAD),细致地分析了不同尺度的血管结构,擅长捕捉复杂的细节,从而显著提高了分割精度。为了解决类别不平衡问题,我们引入了 UPA,动态地为误分类像素分配更多的注意力,从而精确地提取细的和小的血管。此外,为了保持血管结构的连续性,我们整合了血管解剖结构,并开发了 VSG 模块来连接断裂的血管段。此外,引入了特征级对比度(FCL)损失来捕捉同一类别内的细微差异,提高视网膜血管分割的保真度。在三个公共数据集(DRIVE、STARE 和 CHASE_DB1)上进行的广泛实验表明,与现有方法相比,该方法具有更好的性能。代码可在 https://github.com/wangwxr/SMDAA_NET 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验