Suppr超能文献

基于深度学习的利用小样本放射治疗计划 CT 图像的自动肝脏勾画。

Deep learning-based automated liver contouring using a small sample of radiotherapy planning computed tomography images.

机构信息

Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student research committee, Mashhad University of medical sciences, Mashhad, Iran.

Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad.

出版信息

Radiography (Lond). 2024 Aug;30(5):1442-1450. doi: 10.1016/j.radi.2024.08.005. Epub 2024 Aug 23.

Abstract

INTRODUCTION

No study has yet investigated the minimum amount of data required for deep learning-based liver contouring. Therefore, this study aimed to investigate the feasibility of automated liver contouring using limited data.

METHODS

Radiotherapy planning Computed tomography (CT) images were subjected to various preprocessing methods, such as denoising and windowing. Segmentation was conducted using the modified Attention U-Net and Residual U-Net networks. Two different modified networks were trained separately for different training sizes. For each architecture, the model trained with the training set size that achieved the highest dice similarity coefficient (DSC) score was selected for further evaluation. Two unseen external datasets with different distributions from the training set were also used to examine the generalizability of the proposed method.

RESULTS

The modified Residual U-Net and Attention U-Net networks achieved average DSCs of 97.62% and 96.48%, respectively, on the test set, using 62 training cases. The average Hausdorff distances (AHDs) for the modified Residual U-Net and Attention U-Net networks were 0.57 mm and 0.71 mm, respectively. Also, the modified Residual U-Net and Attention U-Net networks were tested on two unseen external datasets, achieving DSCs of 95.35% and 95.82% for data from another center and 95.16% and 94.93% for the AbdomenCT-1K dataset, respectively.

CONCLUSION

This study demonstrates that deep learning models can accurately segment livers using a small training set. The method, utilizing simple preprocessing and modified network architectures, shows strong performance on unseen datasets, indicating its generalizability.

IMPLICATIONS FOR PRACTICE

This promising result suggests its potential for automated liver contouring in radiotherapy planning.

摘要

简介

目前尚无研究探讨基于深度学习的肝脏轮廓勾画所需的最小数据量。因此,本研究旨在探讨使用有限数据进行自动肝脏轮廓勾画的可行性。

方法

对放射治疗计划 CT 图像进行了各种预处理,如去噪和窗口化。使用改良的 Attention U-Net 和 Residual U-Net 网络进行分割。两个不同的改良网络分别针对不同的训练规模进行训练。对于每个架构,选择在训练集大小上达到最高骰子相似系数(DSC)得分的模型进行进一步评估。还使用了两个来自训练集的不同分布的外部未见数据集来检验所提出方法的泛化能力。

结果

使用 62 个训练病例,改良的 Residual U-Net 和 Attention U-Net 网络在测试集上分别实现了 97.62%和 96.48%的平均 DSC。改良的 Residual U-Net 和 Attention U-Net 网络的平均 Hausdorff 距离(AHD)分别为 0.57mm 和 0.71mm。此外,改良的 Residual U-Net 和 Attention U-Net 网络还在两个外部未见数据集上进行了测试,对于来自另一个中心的数据,分别实现了 95.35%和 95.82%的 DSC,对于 AbdomenCT-1K 数据集,分别实现了 95.16%和 94.93%的 DSC。

结论

本研究表明,深度学习模型可以使用小的训练集准确地分割肝脏。该方法使用简单的预处理和改良的网络架构,在未见数据集上表现出强大的性能,表明其具有通用性。

实践意义

这一有希望的结果表明,它在放射治疗计划中的自动肝脏轮廓勾画方面具有潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验