Suppr超能文献

基于深度学习对儿科骨骼生长重要中心进行自动分割,以便在放射治疗期间加以考虑。

Auto-segmentation of important centers of growth in the pediatric skeleton to consider during radiation therapy based on deep learning.

作者信息

Qiu Wenlong, Zhang Wei, Ma Xingmin, Kong Youyong, Shi Pengyue, Fu Min, Wang Dandan, Hu Man, Zhou Xianjun, Dong Qian, Zhou Qichao, Zhu Jian

机构信息

Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China.

Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China.

出版信息

Med Phys. 2023 Jan;50(1):284-296. doi: 10.1002/mp.15919. Epub 2022 Sep 23.

Abstract

BACKGROUND

Routinely delineating of important skeletal growth centers is imperative to mitigate radiation-induced growth abnormalities for pediatric cancer patients treated with radiotherapy. However, it is hindered by several practical problems, including difficult identification, time consumption, and inter-practitioner variability.

PURPOSE

The goal of this study was to construct and evaluate a novel Triplet-Attention U-Net (TAU-Net)-based auto-segmentation model for important skeletal growth centers in childhood cancer radiotherapy, concentrating on the accuracy and time efficiency.

METHODS

A total of 107 childhood cancer patients fulfilled the eligibility criteria were enrolled in the training cohort (N = 80) and test cohort (N = 27). The craniofacial growth plates, shoulder growth centers, and pelvic ossification centers, with a total of 19 structures in the three groups, were manually delineated by two experienced radiation oncologists on axial, coronal, and sagittal computed tomography images. Modified from U-Net, the proposed TAU-Net has one main branch and two bypass branches, receiving semantic information of three adjacent slices to predict the target structure. With supervised deep learning, the skeletal growth centers contouring of each group was generated by three different auto-segmentation models: U-Net, V-Net, and the proposed TAU-Net. Dice similarity coefficient (DSC) and Hausdorff distance 95% (HD95) were used to evaluate the accuracy of three auto-segmentation models. The time spent on performing manual tasks and manually correcting auto-contouring generated by TAU-Net was recorded. The paired t-test was used to compare the statistical differences in delineation quality and time efficiency.

RESULTS

Among the three groups, including craniofacial growth plates, shoulder growth centers, and pelvic ossification centers groups, TAU-Net had demonstrated highly acceptable performance (the average DSC = 0.77, 0.87, and 0.83 for each group; the average HD95 = 2.28, 2.07, and 2.86 mm for each group). In the overall evaluation of 19 regions of interest (ROIs) in the test cohort, TAU-Net had an overwhelming advantage over U-Net (63.2% ROIs in DSC and 31.6% ROIs in HD95, p = 0.001-0.042) and V-Net (94.7% ROIs in DSC and 36.8% ROIs in HD95, p = 0.001-0.040). With an average time of 52.2 min for manual delineation, the average time saved to adjust TAU-Net-generated contours was 37.6 min (p < 0.001), a 72% reduction.

CONCLUSIONS

Deep learning-based models have presented enormous potential for the auto-segmentation of important growth centers in pediatric skeleton, where the proposed TAU-Net outperformed the U-Net and V-Net in geometrical precision for the majority status.

摘要

背景

对于接受放射治疗的儿科癌症患者,常规勾勒重要的骨骼生长中心对于减轻辐射诱导的生长异常至关重要。然而,这受到几个实际问题的阻碍,包括识别困难、耗时以及从业者之间的差异。

目的

本研究的目的是构建并评估一种基于新型三重注意力U-Net(TAU-Net)的自动分割模型,用于儿童癌症放射治疗中的重要骨骼生长中心,重点关注准确性和时间效率。

方法

共有107名符合纳入标准的儿童癌症患者被纳入训练队列(N = 80)和测试队列(N = 27)。由两名经验丰富的放射肿瘤学家在轴向、冠状和矢状位计算机断层扫描图像上手动勾勒颅面生长板、肩部生长中心和骨盆骨化中心,三组共有19个结构。所提出的TAU-Net在U-Net的基础上进行了改进,有一个主分支和两个旁路分支,接收三个相邻切片的语义信息以预测目标结构。通过监督深度学习,每组的骨骼生长中心轮廓由三种不同的自动分割模型生成:U-Net、V-Net和所提出的TAU-Net。使用骰子相似系数(DSC)和95%豪斯多夫距离(HD95)来评估三种自动分割模型的准确性。记录执行手动任务以及手动校正TAU-Net生成的自动轮廓所花费的时间。采用配对t检验比较轮廓描绘质量和时间效率的统计差异。

结果

在包括颅面生长板、肩部生长中心和骨盆骨化中心组的三组中,TAU-Net表现出高度可接受的性能(每组平均DSC分别为0.77、0.87和0.83;每组平均HD95分别为2.28、2.07和2.86毫米)。在测试队列中对19个感兴趣区域(ROI)的总体评估中,TAU-Net相对于U-Net具有压倒性优势(DSC方面63.2%的ROI,HD95方面31.6%的ROI,p = 0.001 - 0.042)以及V-Net(DSC方面94.7%的ROI,HD95方面36.8%的ROI,p = 0.001 - 0.040)。手动勾勒平均用时52.2分钟,调整TAU-Net生成的轮廓平均节省时间37.6分钟(p < 0.001),减少了72%。

结论

基于深度学习的模型在儿科骨骼重要生长中心的自动分割方面展现出巨大潜力,所提出的TAU-Net在大多数情况下的几何精度方面优于U-Net和V-Net。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验