Tresca Cesare, Forcella Pietro Maria, Angeletti Andrea, Ranalli Luigi, Franchini Cesare, Reticcioli Michele, Profeta Gianni
CNR-SPIN c/o Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, L'Aquila, Italy.
Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, L'Aquila, Italy.
Nat Commun. 2024 Aug 23;15(1):7283. doi: 10.1038/s41467-024-51348-z.
The discovery of ambient superconductivity would mark an epochal breakthrough long-awaited for over a century, potentially ushering in unprecedented scientific and technological advancements. The recent findings on high-temperature superconducting phases in various hydrides under high pressure have ignited optimism, suggesting that the realization of near-ambient superconductivity might be on the horizon. However, the preparation of hydride samples tends to promote the emergence of various metastable phases, marked by a low level of experimental reproducibility. Identifying these phases through theoretical and computational methods entails formidable challenges, often resulting in controversial outcomes. In this paper, we consider N-doped LuH as a prototypical complex hydride: By means of machine-learning-accelerated force-field molecular dynamics, we have identified the formation of H molecules stabilized at ambient pressure by nitrogen impurities. Importantly, we demonstrate that this molecular phase plays a pivotal role in the emergence of a dynamically stable, low-temperature, experimental-ambient-pressure superconductivity. The potential to stabilize hydrogen in molecular form through chemical doping opens up a novel avenue for investigating disordered phases in hydrides and their transport properties under near-ambient conditions.
常压超导的发现将标志着一个期待了一个多世纪的划时代突破,有可能带来前所未有的科学技术进步。最近关于高压下各种氢化物中高温超导相的发现燃起了人们的乐观情绪,表明近常压超导的实现可能即将到来。然而,氢化物样品的制备往往会促进各种亚稳相的出现,其特点是实验可重复性较低。通过理论和计算方法识别这些相面临巨大挑战,常常导致有争议的结果。在本文中,我们将氮掺杂的氢化镥视为典型的复杂氢化物:通过机器学习加速的力场分子动力学,我们确定了由氮杂质在常压下稳定存在的氢分子的形成。重要的是,我们证明了这种分子相在动态稳定的低温实验常压超导的出现中起着关键作用。通过化学掺杂以分子形式稳定氢的潜力为研究氢化物中的无序相及其在近常压条件下的输运性质开辟了一条新途径。