Suppr超能文献

通过合成光遗传学振荡器调制时空模式从共振到混沌。

From resonance to chaos by modulating spatiotemporal patterns through a synthetic optogenetic oscillator.

机构信息

Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.

出版信息

Nat Commun. 2024 Aug 23;15(1):7284. doi: 10.1038/s41467-024-51626-w.

Abstract

Oscillations are a recurrent phenomenon in biological systems across scales, but deciphering their fundamental principles is very challenging. Here, we tackle this challenge by redesigning the wellcharacterised synthetic oscillator known as "repressilator" in Escherichia coli and controlling it using optogenetics, creating the "optoscillator". Bacterial colonies manifest oscillations as spatial ring patterns. When we apply periodic light pulses, the optoscillator behaves as a forced oscillator and we systematically investigate the properties of the rings under various light conditions. Combining experiments with mathematical modeling, we demonstrate that this simple oscillatory circuit can generate complex dynamics that are transformed into distinct spatial patterns. We report the observation of synchronisation, resonance, subharmonic resonance and period doubling. Furthermore, we present evidence of a chaotic regime. This work highlights the intricate spatiotemporal patterns accessible by synthetic oscillators and underscores the potential of our approach in revealing fundamental principles of biological oscillations.

摘要

在不同尺度的生物系统中,震荡是一种反复出现的现象,但要揭示其基本原理却极具挑战性。在这里,我们通过重新设计在大肠杆菌中广为人知的合成振荡器“阻遏子”并利用光遗传学对其进行控制,从而应对这一挑战,创造出“光振荡器”。细菌菌落表现出的震荡呈现出空间环纹图案。当我们施加周期性的光脉冲时,光振荡器表现为受迫振荡器,我们系统地研究了在不同光照条件下环的特性。通过实验与数学建模相结合,我们证明了这个简单的振荡电路可以产生复杂的动力学,进而转化为不同的空间模式。我们报告了同步、共振、亚谐波共振和倍周期的观测结果。此外,我们还提供了混沌状态存在的证据。这项工作突出了合成振荡器所能产生的复杂时空模式,并强调了我们的方法在揭示生物振荡基本原理方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a435/11343849/30746b3842a4/41467_2024_51626_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验